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We study and classify the purely parabolic discrete subgroups 
of PSL(3, C). This includes all discrete subgroups of the 
Heisenberg group Heis(3, C). While for PSL(2, C) every 
purely parabolic subgroup is Abelian and acts on P1

C with 
limit set a single point, the case of PSL(3, C) is far more 
subtle and intriguing. We show that there are five families of 
purely parabolic discrete groups in PSL(3, C), and some of 
these actually split into subfamilies. We classify all these by 
means of their limit set and the control group. We use first 
the Lie-Kolchin Theorem and Borel’s fixed point theorem to 
show that all purely parabolic discrete groups in PSL(3, C)
are virtually triangularizable. Then we prove that purely 
parabolic groups in PSL(3, C) are virtually solvable and 
polycyclic, hence finitely presented. We then prove a slight 
generalization of the Lie-Kolchin Theorem for these groups: 
they are either virtually unipotent or else Abelian of rank 2 
and of a very special type. All the virtually unipotent ones 
turn out to be conjugate to subgroups of the Heisenberg group 
Heis(3, C). We classify these using the obstructor dimension 
introduced by Bestvina, Kapovich and Kleiner. We find that 
their Kulkarni limit set is either a projective line, a cone of 
lines with base a circle or else the whole P2

C . We determine 
the relation with the Conze-Guivarc’h limit set of the action 
on the dual projective space P̌2

C and we show that in all cases 
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the Kulkarni region of discontinuity is the largest open set 
where the group acts properly discontinuously.

© 2022 Elsevier Inc. All rights reserved.

Introduction

Henri Poincaré introduced in [26] the concept of Kleinian groups, i.e. discrete sub-
groups of the Möbius group Möb(2, C), which is isomorphic to PSL(2, C), and he classified 
its elements into three types. Poincaré’s classification can be stated by saying that 
g ∈ PSL(2, C) is elliptic if it has a lift g̃ to SL(2, C) which is diagonalizable and its 
eigenvalues are all unitary; g is parabolic if g̃ is non-diagonalizable and its eigenval-
ues are all unitary, and g is loxodromic otherwise. That classification, with these same 
definitions, extends to PSL(n + 1, C) for all n ≥ 2, see [15,16,24].

In this work we look at PSL(3, C), the group of automorphisms of the projective plane 
P 2
C, and we classify its discrete subgroups that (besides the identity) have only parabolic 

elements. These are called purely parabolic groups. In order to describe our results we 
remark that every purely parabolic discrete group in PSL(3, C) has a global fixed point 
p ∈ P 2

C and therefore P 2
C \ {p}, one has a canonical holomorphic projection map π from 

P 2
C \ {p} into � ∼= P 1

C. This defines a group homomorphism:

Π = Πp,�,G : PSL(3,C) → Bihol(�) ∼= PSL(2,C) ,
Π(g)(x) = π(g(x))

which is independent of � up to conjugation. Its restriction to G is the control morphism 
of G and its image Π(G) is the control group (see Definition 1.12 and [16]).

The various types of purely parabolic groups in PSL(3, C) are fully described in Sec-
tion 2, where we also describe their algebraic and dynamical properties. There are five 
such main families, these are:

• Elliptic groups. These are the only ones that are not conjugate to subgroups of the 
Heisenberg group Heis(3, C) and they are subgroups of fundamental groups of elliptic 
surfaces (see [8]).

• Torus groups. These are subgroups of fundamental groups of complex tori:

T (L) =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1 0 a

0 1 b

0 0 1

⎤⎥⎦ : (a, b) ∈ L

⎫⎪⎬⎪⎭ ,

where L is an additive discrete subgroup of C2.
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• Dual torus groups,

T ∗(L) =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1 a b

0 1 0
0 0 1

⎤⎥⎦ : (a, b) ∈ L

⎫⎪⎬⎪⎭ .

These split into three types: the first have Kulkarni limit set (see Definition 1.5) a 
complex projective line; the second have Kulkarni limit set a cone of projective lines 
over a circle, and the third type have all P 2

C as Kulkarni limit set. From now on, 
for simplicity, we will say only limit set instead Kulkarni limit set, unless we specify 
otherwise.

• Inoue groups of three types. The first have limit set a cone of lines over a circle, the 
others have limit set all of P 2

C. The three types can be distinguished by the limit set 
and the control morphism (see Proposition 2.11).

• Kodaira groups K0, which are Abelian, and their extensions. There are five types 
of extensions Ki, i = 1, · · · , 5, which are purely parabolic and discrete. The first 
type K1 have limit set a projective line; the second type K2 have limit set a cone of 
projective lines over the circle. The remaining three types have limit set all of P 2

C

and they are distinguished by their control morphism (see details in Section 2).

In this work we prove:

Theorem 0.1. Let G ⊂ PSL(3, C) be a purely parabolic discrete subgroup. Then:

(1) G is either virtually elliptic or virtually conjugate to a subgroup of the Heisenberg 
group Heis(3, C), which is itself purely parabolic.

(2) Its Kulkarni limit set ΛKul is either a line, a cone of lines over a circle, or the whole 
of P 2

C, and up to conjugation:
(a) ΛKul is a line if, and only if, G is an elliptic group, a torus group, a dual torus 

group of type I, Abelian Kodaira group or a K1 group.
(b) If ΛKul is a cone of lines over a circle, then G is either a dual torus group of 

type II, a Kleinian Inoue group, or a extended Kodaira group K2.
(c) If ΛKul = P 2

C, then G is a dual Torus group of type III, a discrete non-Kleinian 
Inoue group, an extended Inoue group, or an extended Kodaira group Ki for 
i = 3, 4, 5.

Concerning the dynamics we have:

Theorem 0.2. Let G ⊂ PSL(3, C) be as in the theorem above and let Λ∗
CoG be the Conze-

Guivarc’h limit set of the action on the dual P̌ 2
C. Then:

(1) If ΛKul is a line and G is not a dual torus group, then Λ∗
CoG is the projective dual 

of ΛKul and it is the unique minimal set.
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(2) If ΛKul is a cone of lines over a circle, then Λ∗
CG contains a projective real line and 

it is not a minimal set because there is always a global fixed point.
(3) If ΛKul = P 2

C, then: Λ∗
CoG contains a complex projective line and it is never a 

minimal set (as before, because there is a global fixed point).

The theorem below is essential for our proof of Theorem 0.1.

Theorem 0.3. Let G ⊂ Heis(3, C) be a discrete group, then G is purely parabolic and:

(1) There are B1, . . . , Bn subgroups of G such that G = Ker(Π|G) �B1 � · · ·�Bn and 
each Bi is isomorphic to Zki , for some ki ∈ N ∪ {0}.

(2) rank(Ker(Π|G)) +
∑n

i=1 ki ≤ 6.
(3) If G is complex Kleinian, then rank(Ker(Π|G)) +

∑n
i=1 ki ≤ 4.

We recall (see Definition 1.4) that G is complex Kleinian if it is discrete and there is 
a non-empty open invariant set where G acts properly discontinuously.

The proof of Theorem 0.3 uses in an essential way the obstructor dimension of a group 
G, introduced by Bestvina, Kapovich and Kleiner in [12]. This is a lower bound for the 
“action dimension” of G, and it is based on the classical van Kampen obstruction for 
embedding a simplicial complex into an Euclidean space [31]. Theorem 0.3 strengthens, 
for discrete groups in Heis (3, C), a Theorem of Bieri and Strebel [10], ensuring that 
every infinite, finitely presented solvable group is virtually an ascending HNN-extension 
of a finitely generated solvable group.

A difficulty one meets when working with the projective groups PSL(n +1, C), which 
are non-compact, is that one does not have the convergence property (cf. [13,21]). We 
overcome this problem by using repeatedly the space of pseudo-projective maps,

SP(3,C) = (M(3,C) − {0})/C∗,

where M(3, C) is the set of all 3 × 3 matrices with complex coefficients and C∗ acts by 
the usual scalar multiplication. This was introduced in [16,17] and it provides a natural 
compactification of the projective group PSL(3, C).

We remark that every parabolic element in PSL(3, C) is conjugate to a parabolic 
element in PU(2, 1), the group of holomorphic isometries of the complex hyperbolic 
space (see [16,24]). Yet, the results in this paper show that there are plenty of purely 
parabolic groups in PSL(3, C) which are not conjugate to subgroups in PU(2, 1). Some 
examples are:

(1) All purely parabolic groups whose limit set ΛKul is not a single line.
(2) Unipotent Abelian complex Kleinian groups whose limit set is a single line and the 

rank is at least three.
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It is possible to provide a full characterization of the purely parabolic groups in PSL(3, C)
that are conjugate to groups in PU(2, 1). This shall be done elsewhere.

A corollary of the results in this article is that the Kulkarni limit set of purely parabolic 
complex Kleinian groups in PSL(3, C) either consists of one line or it has infinitely many 
lines but only two in general position (a set of lines is said to be in general position if 
no three lines in the set are concurrent). This is essential for the classification of the 
complex Kleinian groups that are elementary, i.e., they have either a point or a line with 
finite orbit. The complete classification of the elementary groups in PSL(3, C) is given 
in our forthcoming paper [6], in relation with a dictionary in complex dimension two, 
inspired by Sullivan’s dictionary [7].

We thank the referee for plenty of valuable suggestions that highly improved the 
original version of this article.

1. Preliminaries

Let P 2
C := (C3 \ {0})/C∗ be the complex projective plane and [ ] : C3 \ {0} → P 2

C the 
quotient map. A line in P 2

C means the image under this projection of a complex linear 
subspace of dimension 2. Given p, q ∈ P 2

C distinct points, there exists a unique complex 
line passing through p and q; such line is denoted by ←→p, q. The projective dual P̌ 2

C of P 2
C

is Gr(P 2
C) the Grassmannian of all complex lines in P 2

C equipped with the topology of 
the Hausdorff convergence.

The following notion is used along the paper.

Definition 1.1. A pencil of lines in P 2
C is a collection of lines passing through a common 

point.

Consider the usual action of Z3 on SL(3, C). Then PSL(3, C) = SL(3, C)/Z3 is a 
Lie group whose elements are called projective transformations. We denote also by 
[ ] : SL(3, C) → PSL(3, C) the quotient map. We denote by g = (gij) the ele-
ments in SL(3, C). Given g ∈ PSL(3, C), we say that g ∈ SL(3, C) is a lift of g if 
[g] = g. Then PSL(3, C) acts transitively, effectively and by biholomorphisms on P 2

C by 
[g]([w]) = [g(w)], where w ∈ C3 \ {0} and g ∈ SL(3, C). Recall (cf. [16, Chapter 4]):

Definition 1.2. Let g ∈ PSL(3, C) and g a lift to SL(3, C). Then g is:

• elliptic if g is diagonalizable with unitary eigenvalues;
• parabolic if g is non-diagonalizable with unitary eigenvalues;
• loxodromic if g has some non-unitary eigenvalue.

Now let M(3, C) be the set of all 3 × 3 matrices with complex coefficients. Define 
the space of pseudo-projective maps by: SP(3, C) = (M(3, C) − {0})/C∗, where C∗
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acts on M(3, C) − {0} by the usual scalar multiplication. We have the quotient map 
[ ] : M(3, C) \ {0} → SP(3, C). Given P ∈ SP(3, C) we define its kernel by:

Ker(P ) = [Ker(P) \ {0}],

where P ∈ M(3, C) is a lift of P . Clearly PSL(3, C) ⊂ SP(3, C) and an element P in 
SP(3, C) is in PSL(3, C) if and only if Ker(P ) = ∅. Notice that SP(3, C) is a manifold 
naturally diffeomorphic to P 8

C, so it is compact.
Recall that given a discrete group G in PSL(3, C), its equicontinuity set Eq(G) is the 

largest open set on which the G-action forms a normal family.

Theorem 1.3 (See Proposition 2.5 in [15]). Let G ⊂ PSL(3,C) be a discrete group. Then 
G acts properly discontinuously on Eq(G) and one has:

Eq(G) = P 2
C \
⋃

Ker(P ) ,

where the union runs over the kernels of all P ∈ SP(3, C) \ PSL(3, C) satisfying that 
there exists a sequence (gn) ⊂ G that converges to P .

Now let G ⊂ PSL(3, C) be a discrete group and let Ω be a non-empty G-invariant set, 
i.e., GΩ = Ω. We say that G acts properly discontinuously on Ω if for each compact set 
K ⊂ Ω the set {g ∈ G | g(K) ∩K} is finite.

The following notion was introduced in [28]:

Definition 1.4. G is complex Kleinian if there exists a non-empty open G-invariant set 
in P 2

C where G acts properly discontinuously.

Definition 1.5. Let G ⊂ PSL(2, C) be a discrete group. Its Kulkarni limit set is [22]:

ΛKul(G) = L0(G) ∪ L1(G) ∪ L2(G) ,

where L0(G) is the closure of the points in P 2
C with infinite isotropy group, L1(G) is the 

closure of the set of accumulation points of the orbits Gz where z runs over P 2
C \L0(G), 

and L2(G) is the closure of the set of accumulation points of orbits GK where K runs 
over all compact sets in P 2

C − (L0(G) ∪L1(G)). The Kulkarni region of discontinuity (or 
the ordinary set) of G is:

ΩKul(G) = P 2
C \ ΛKul(G).

Proposition 1.6. Let G be a complex Kleinian group. Then:

(1) [See [22]] The sets ΛKul(G), L0(G), L1(G), L2(G) are G-invariant closed sets.
(2) (See [22]) The group G acts properly discontinuously on ΩKul(G).
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(3) (See [24] or [16, Proposition 3.3.6]) Let C ⊂ P 2
C be a closed G-invariant set such that 

for every compact set K ⊂ P 2
C − C, the set of cluster points of GK is contained in 

(L0(G) ∪ L1(G)) ∩ C, then ΛKul(G) ⊂ C.
(4) (See [15, Corollary 2.6]) The equicontinuity set of G is contained in ΩKul(G).
(5) (See [5, Proposition 3.6]) If G0 ⊂ G is a subgroup with finite index, then

ΛKul(G) = ΛKul(G0).

(6) (See [16, Proposition 3.3.4]) The set ΛKul(G) contains at least one complex line.

There is also the Conze-Guivarc’h limit set, see [19]. For this we need the following 
generalization introduced in [9].

Definition 1.7. Let G ⊂ PSL(3, C) be a discrete group acting on P̌ 2
C. We define the 

Conze-Guivarc’h limit set of G, denoted ΛCoG(G), as the closure of the set of points 
q ∈ P̌ 2

C for which there exist an open subset U ⊂ P̌ 2
C and a sequence (gn) ⊂ G, gn = gm

if n = m, such that for every p ∈ U

lim
n→∞

gn(p) = q.

A couple of examples will picture the previous concept. We need:

Definition 1.8. A matrix g ∈ GL (3, C) is proximal if it has an eigenvalue λ0 ∈ C such 
that |λ0| > |λ| for all other eigenvalues λ of g. For such a g, an eigenvector v0 ∈ C3

corresponding to the eigenvalue λ0 is a dominant eigenvector of g. We say that g ∈
PSL(3, C) is proximal if it has a lift g̃ ∈ SL(3, C) which is proximal; and v ∈ P 2

C is 
dominant for g if there is a lift ṽ ∈ C3 of v which is dominant for γ̃.

We remark that by [24], every strongly loxodromic element in PSL(3, C) is proximal, 
and all loxodromic elements in PU(2, 1) are strongly loxodromic.

Example 1.9. [Complex hyperbolic groups] If G ⊂ PU(2, 1) is a non-elementary discrete 
subgroup, then ΛCoG(Γ) coincides with the Chen-Greenberg limit set [18] of G, ΛCG(Γ), 
which is the closure of the orbits of points in the complex hyperbolic space ∂H2

C. This 
follows because loxodromic elements in PU(2, 1) are proximal and their attracting fixed 
points in ∂H2

C correspond to dominant vectors.

Example 1.10. [Veronese groups] Given a non-elementary discrete subgroup G ⊂
PSL(2, C), let ι : PSL(2, C) → PSL(3, C) be the canonical irreducible representation 
and ψ : P 1

C → P 2
C the Veronese embedding. A simple computation shows that ι carries 

loxodromic elements in PSL(2, C) into strongly loxodromic elements in PSL(3, C). This 
implies ΛCoG(ι(G)) = ψ(ΛChG(G)), see [14, Theorem 2.10].
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Recall from [19] that a strongly irreducible group in PSL(3, C) is a group whose action 
on P 2

C does not have points or lines with finite orbit.

Theorem 1.11 (See [19] and Corollary 3 in [9]). Let G ⊂ PSL(3, C) be a strongly irre-
ducible group, then:

(1) The limit set ΛCoG(G) is non-empty and is the unique minimal set for the action of 
G on P 2

C.
(2) The closure of the dominant points of proximal elements in G coincides with 

ΛCoG(G).

Now recall [16]:

Definition 1.12. Let G be a discrete group in PSL(3, C). We say that G is weakly-
controllable if it acts with a fixed point p in P 2

C. In this case a choice of a line L in P 2
C\{p}

determines a projection map P 2
C \ {p} → L and a group morphism Π : G → PSL(2, C)

called the control morphism of G; its image Π(G) ⊂ PSL(2, C) is the control group. 
These are well defined and independent of L up to an automorphism of PSL(2, C).

Theorem 1.13 (See Theorem 5.8.2 in [16]). Let G ⊂ PSL(3, C) be discrete and weakly-
controllable, with p ∈ P 2

C a G-invariant point and � ⊂ P 2
C a complex line not containing 

p. Let Πp,� = Π be a projection map defined as above. If Ker(Π|G) is finite and Π(G) ⊂
Aut(�) ∼= PSL(2, C) is discrete, then G acts properly discontinuously on

Ω =

⎛⎝ ⋃
z∈Ω(Π(G))

←→p, z

⎞⎠− {p} ,

where the union runs over all points in � where the action of Π(G) is discontinuous.

The following is an improvement of the λ-Lemma in [24] that we use in the sequel. 
This is inspired by the classical λ-Lemma of Palis and De Melo [25].

Lemma 1.14 (See Section 2 in Heis [15]). Let G be a discrete group and let (gn) ⊂ G be 
a sequence of distinct elements, then there exist a subsequence (hn) ⊂ (gn) and pseudo 
projective maps P, Q ∈ SP (3, C) satisfying:

(1) hn m→∞ P and h−1
n m→∞ Q .
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(2)

Im(P ) ⊂ Ker(Q) ,
Im(Q) ⊂ Ker(P ) ,
dim(Im(P )) + dim(Ker(P )) = 1 ,
dim(Im(Q)) + dim(Ker(Q)) = 1 .

(3) For every point x ∈ Ker(P ) we get

Ker(Q) =
⋃

xn→x

{accumulation points of (hn(xn))}.

(4) If Ω ⊂ P 2
C is an open set on which G acts properly discontinuously, then either 

Ker(P ) ⊂ P 2
C − Ω or Ker(Q) ⊂ P 2

C − Ω.

We use in the sequel the obstructor dimension of a group G, introduced by Bestvina, 
Kapovich and Kleiner in [12]. We refer to [12, Definition 4].

Definition 1.15. Fix a non-negative integer m. A finite simplicial complex K of dimension 
≤ m is an m-obstructor complex if the following holds:

(1) There is a collection

Σ = {(σi, τi)ki=1}

of unordered pairs of disjoint simplices of K with dim σi+dim τi = m that determine 
an m-cycle (over Z2) in

{σ × τ ⊂ K ×K|σ ∩ τ = ∅} /Z2

where Z2 acts by (x, y) �→ (y, x).
(2) For some (any) general position map f : K → Rm the (finite) number Σk

i=1|f(σi) ∩
f(τi)| is odd.

(3) For every m-simplex σ ∈ K the number of vertices v such that the unordered pair 
{σ, τ} is in Σ is even.

Definition 1.16. The obstructor dimension obdim(G) is defined to be 0 for finite groups, 
1 for 2-ended groups (see [20, Section 9.1] for a definition of the ends of a group). 
Otherwise obdim(G) is m + 2 where m is the largest integer such that for some m-
obstructor complex K and some triangulation of the open cone cone(K) there exists a 
proper map f : cone(K)(0) → G satisfying:

(1) for disjoint simplices σ, τ in K and every D > 0 there are compact sets C1 ⊂ cone(σ), 
C2 ⊂ cone(τ) such that f(cone(σ) − C1) and f(cone(σ) − C2) are > D apart.
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(2) there is a uniform upper bound on the distance between the images of adjacent 
vertices in cone(K)(0)

We use the following theorems; see [11,12] for the corresponding proofs:

Theorem 1.17 (See Theorem 1 in [12]). If obdim(G) ≥ m, then G can not act properly 
discontinuously on a contractible manifold of dimension < m.

Theorem 1.18 (See Corollary 2.7 in [12]). If G = H�Q with H and Q finitely generated 
and H weakly convex, then obdim(G) ≥ obdim(H) + obdim(Q).

Theorem 1.19 (See Corollary 2.2 in [11]). Let G be a lattice in a simply connected nilpo-
tent Lie group N, then obdim(G) = dim(N), in particular obdim(Zn) = n.

2. The families of purely parabolic discrete groups

There is a partition of the purely parabolic discrete groups in PSL(3, C) into five 
families: elliptic, torus, dual torus, Inoue and Kodaira groups. We now define these 
families and discuss their algebraic structure and dynamical properties. We find that 
some of these families naturally split into subfamilies according to the topology of their 
limit set and the structure of the control group.

Note that the simplest purely parabolic groups are cyclic, generated by a parabolic 
element; there are three types of such elements in PSL(3, C), described by the Jordan 
normal form of their lifts to SL(3, C). These are:

⎛⎜⎝ 1 1 0
0 1 0
0 0 1

⎞⎟⎠ ,

⎛⎜⎝ 1 1 0
0 1 1
0 0 1

⎞⎟⎠ ,

⎛⎜⎝ λ 1 0
0 λ 0
0 0 λ−2

⎞⎟⎠ , |λ| = 1 , λ 
= 1.

The first two of these are unipotent; the third type is called ellipto-parabolic: it is rational 
if λ is a root of unity or irrational otherwise (see [16, Chapter 4] for details). Each of these 
belongs to a different type of the families we describe below. The first type generates 
torus groups, the second generates Abelian Kodaira groups and the ellipto-parabolic 
elements generate elliptic groups.

We remark that all the groups we present in this section are upper triangular. Hence 
they fix the point e1 ∈ P 2

C, so they are weakly-controllable. Given one of these groups G, 
we let Π : G → PSL(2, C) be its control morphism (Definition 1.12). Notice that except 
for the elliptic groups, all others are subgroups of the Heisenberg group.

Throughout this section we denote by W an additive subgroup of C, by L and additive 
subgroup of C2 and by M an additive subgroup of R.

reviewer
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2.1. Elliptic groups

Let W ⊂ C be an additive discrete subgroup and consider a group morphism μ :
W → S1. Define:

Ell(W,μ) =

⎧⎪⎨⎪⎩
⎡⎢⎣ μ(w) μ(w)w 0

0 μ(w) 0
0 0 μ(w)−2

⎤⎥⎦ : w ∈ W

⎫⎪⎬⎪⎭ .

Lemma 2.1. Elliptic groups act with two fixed points, {e1} and {e3}. The control group 
with respect to {e3} is W and the kernel of Π is trivial, while the control group with 
respect to {e1} is the image of W under μ. Also:

• The Kulkarni limit set is a line.
• The equicontinuity set coincides with Kulkarni’s discontinuity region and is the 

largest open set on which the group acts properly discontinuously.
• The Conze-Guivarc’h limit set of the action on the dual P̌ 2

C is the dual point of the 
Kulkarni limit set, but it is not the only minimal set.

The kernel may or may not be trivial. If the kernel is not trivial, then it is a proper 
subgroup of W isomorphic to Z.

Proof. The proof of the statements about the control groups are straightforward from 
the definition. From Theorem 1.13 we have that the Kulkarni limit set is the line ←−→e1, e2

and the Kulkarni’s discontinuity region is the largest open set on which Ell(W, μ) acts 
properly discontinuously. Let us prove that ΩKul coincides with the equicontinuity set. 
Let (gn) ⊂ Ell(W, μ) be a sequence of distinct elements. Then (gn) can be written as:

gn =
[1 an 0

0 1 0
0 0 μ−3(an)

]
,

for some sequence (an) in W with |an| converging to ∞. Hence there exists a ∈ C∗ such 
that:

gn n→∞

[0 a 0
0 0 0
0 0 0

]
; and g∗n n→∞

[0 0 0
a 0 0
0 0 0

]
.

We get Eq(Ell(W, μ)) = C2 = ΩKul(Ell(W, μ)) and ΛCoG(Ell(W, μ)) = {e2} is a minimal 
set. This also proves the statements about the Conze-Guivarc’h limit set. Notice that 
{e3} also is a minimal set for the dual action, so there is more than one minimal set. �
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2.2. Torus groups

These are of the form:

T (L) =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1 0 a

0 1 b

0 0 1

⎤⎥⎦ : (a, b) ∈ L

⎫⎪⎬⎪⎭ ,

where L is an additive discrete subgroup of C2.

Lemma 2.2. The control group Π(G) is an additive subgroup of C that may or may not 
be discrete, and:

• The Kulkarni limit set ΛKul is a line.
• The equicontinuity set coincides with the Kulkarni discontinuity region and it is the 

largest open set where the group acts properly discontinuously.
• The Conze-Guivarc’h limit set Λ∗

CoG(T (W )) of the action on the dual projective 
plane P̌ 2

C is a single point, the projective dual of the unique line in ΛKul, and it is 
the only minimal set for the action on P̌ 2

C.

The kernel of the control morphism Π may or may not be trivial.

Proof. The first and second statements follow from [16, 3.4.2]; in fact ΛKul is the 
line ←−→e1, e2. It remains to prove the statements about Λ∗

CoG(T (L)). Let (gn) ⊂ T (L)
be a sequence of distinct elements. Choose a sequence (an, bn) ∈ L such that 
|an| + |bn|n→∞ ∞ and set:

gn =
[1 0 an

0 1 bn
0 0 1

]
.

We can assume that (taking a subsequence if necessary) there exist a, b ∈ C so that 
|a| + |b| 
= 0 and

gn n→∞

[0 0 a
0 0 b
0 0 0

]
.

Hence

g∗n =
[ 1 0 0

0 1 0
−an −bn 1

]

converges to {e3}. Thus Λ∗
CoG(T (L)) = {e3} and this set is minimal. �
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2.3. Dual Torus groups

This family actually splits in three classes, depending on the limit set. To explain this 
trichotomy, let us consider first the following lemma. We recall that the rank of a group 
is the smallest number of elements that generate it.

Lemma 2.3. Let L be an additive discrete subgroup of C2 and consider the natural pro-
jection [ ] : C2 \{0} → P 1

C. Then the closure of [L \{0}] is either a point, a real projective 
line or the whole of P 1

C, and one has:

• The closure of [L \ {0}] is a point if and only if L has rank 1 or it has rank 2 and it 
is generated by two C-linearly dependent elements.

• The closure of [L \ {0}] is a real projective line if and only if L has rank 2 and it is 
generated by two C-linearly independent elements.

• The closure of [L \ {0}] = P 1
C if and only if L has rank at least 3.

Proof. If L has rank 1, then trivially [L \ {0}] is a single point. If L has rank two and is 
generated by two C-linearly dependent vectors, then [L \ {0}] is trivially a single point. 
If L has rank two and is generated by two C-linearly independent vectors, then we can 
assume that L = Z ⊕Z, therefore [L \ {0}] = {[1, m/n] : m, n ∈ Z} which is a dense set 
in a real projective line in P 1

C. Finally, if L has rank at least 3, then we can pick up two 
elements in L which are C-linearly independent. Moreover we can assume that (1, 0) and 
(0, 1) are such elements, let p = (w1, w2) be the other point in L, then

[Π \ {0}] = {[k + nw1 : l + nw2] : k, l, n ∈ Z} = {[r + sw1 : t + sw2] : r, s, t ∈ R} .

Now, if z ∈ C satisfies Im(z) 
= 0 and we consider

s0 = 1, r0 = Im(w2) −Re(z)Im(w1)
Im(z) −Re(w1), t0 = z(r + w1) − w2 ,

then a straightforward computation shows that [1 : z] = [r0 + s0w1 : t0 + s0w2], which 
concludes the proof. �
Definition 2.4. A dual torus group in PSL(3, C) is a group of the form

T ∗(L) =

⎧⎪⎨⎪⎩g(a,b) =

⎡⎢⎣ 1 a b

0 1 0
0 0 1

⎤⎥⎦ : (a, b) ∈ L

⎫⎪⎬⎪⎭ ,

where L ⊂ C2 is an additive discrete group. The torus group is of type I if its Kulkarni 
limit set ΛKul is a line; it is of type II if ΛKul is a cone of lines over a circle, and it is of 
type III if ΛKul = P 2

C.
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Lemma 2.5. All dual torus groups are discrete, with trivial control group, and:

(1) The group is:
(a) Type I if and only if L either has rank 1 or it is generated by two C-linearly 

dependent elements;
(b) Type II if and only if L has rank 2 and it is generated by two C-linearly inde-

pendent elements;
(c) Type III if and only if L has rank at least 3.

(2) If it is of type I or II, then:
(a) Its Kulkarni discontinuity set is the largest open set where the action is properly 

discontinuously and it coincides with the equicontinuity set.
(b) The Conze-Guivarc’h limit set of the dual action is the projective dual of ΛKul; 

it is either a point if the group is of type I or a real projective line if it is of type 
II, and it is a minimal set whenever it is a single point.

(3) If the group is of type III, then:
(a) The sets ΩKul and Eq are both empty and there is no non-empty open invariant 

set of P 2
C where the group acts properly discontinuously.

(b) The Conze-Guivarc’h is the projective dual of ΛKul, but this is not a minimal 
set since there is a global fixed point.

Proof. It is not hard to check that these groups are discrete and they have trivial control 
group. The rest of the proof follows from Lemma 2.3. �
2.4. The Inoue groups

There are three classes of groups in this family.
a) Inoue Kleinian groups, or just Inoue groups. These are proper subgroups of fun-

damental groups of Inoue surfaces. The limit set is a cone of lines over a circle.
b) Inoue non-Kleinian groups. These are Inoue groups in the sense of Definition 2.6

whose limit set is all P 2
C .

c) Extended Inoue groups. These are finite extensions of Inoue groups whose limit set 
is all of P 2

C, hence they are not Kleinian.

2.4.1. a) Inoue groups
Let L ⊂ C2 be an additive discrete subgroup, let x, y, z ∈ C and set

γ1 = γ1(x, y, z) :=
[1 x + z y

0 1 z
0 0 1

]
, I = I(u, v) :=

〈[1 u v
0 1 0
0 0 1

]
, (u, v) ∈ L

〉
.

Notice I is a dual torus group.
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Definition 2.6. An Inoue group is a discrete subgroup of PSL(3, C) which is an extension 
G = 〈I, γ1〉 where the dual torus group I is of type II. This kind of groups splits into two 
classes: Kleinian, i.e. subgroups with non-empty discontinuity region, and non-Kleinian.

Theorem 2.7. A group Γ is Inoue if and only if there exists a dual torus group Ĩ such 
that:

Γ = {Ĩ γk
1 |k ∈ Z} .

These groups are non-Abelian semi-direct products Z2 �Z. They are weakly-controllable 
with control group Z and kernel (of the control morphism) Z ⊕Z. Moreover:

(1) The group is Kleinian if and only if it is of the form:

Ino(x, y, p, q, r) =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1 k + lp

q
+ mx l

r
+ m

(
k + lp

q

)
+
(
m
2
)
x + my

0 1 m
0 0 1

⎤⎥⎦ : k, l,m ∈ Z

⎫⎪⎬⎪⎭
where x, y ∈ C and p, q, r ∈ Z are such that p, q are co-primes and q2 divides r.

(2) If the group is Kleinian, then:
• The Kulkarni limit set is a cone of lines over a real projective space:

ΛKul = ←−→e1, e2 ∪
⋃
s∈R

←−−−−−−−→
e1, [0 : 1 : s] .

• The Kulkarni discontinuity set coincides with the equicontinuity set and it is the 
largest open set on which the group acts properly discontinuously. These sets are
biholomorphic to C × (H+ ∪H−) where H± are the open half planes in C.

• The Conze-Guivarc’h limit set for Ino(x, y, p, q, r) is a real projective line, and it 
is not minimal.

Proof. Set Ĩ = {g ∈ Γ : g ∈ Ker(Π)}, then Γ = {hγk
1 : k ∈ Z, h ∈ Ĩ} and Ĩ is 

a dual torus groups, proving the first statement. On the other hand, it is clear that 
Ino(x, y, p, q, r) is a discrete group. Set:

g(k, l,m) =

⎡⎢⎢⎣ 1 k + lc + mx ld + m (k + lc) +
(
m
2

)
x + my

0 1 m

0 0 1

⎤⎥⎥⎦ .

Let k, l ∈ Z, then a straightforward computation shows that the fixed point set is:

Fix(g(k, l, 0)) =
←−−−−−−−−−−−−→
e1, [0 : −ld : k + lc] .

Hence, letting L0 be as in Definition 1.5 we get:
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←−→e1, e3 ∪
⋃
s∈R

←−−−−−−−→
e1, [0 : 1 : s] ⊂ L0(Ino(x, y, p, q, r)) .

Finally, let us show that

P 2
C −Eq(Ino(x, y, p, q, r)) = ←−→e1, e3 ∪

⋃
s∈R

←−−−−−−−→
e1, [0 : 1 : s] .

Let (gm)m∈N ⊂ Ino(x, y, p, q, r) be a sequence of distinct elements, then there exists a 
sequence um = (km, lm, nm) ∈ Z3 of distinct elements such that:

gm =

⎡⎢⎢⎣ 1 km + lmc + nmx lmd + nm (km + lmc) +
(
nm

2

)
x + nmy

0 1 nm

0 0 1

⎤⎥⎥⎦ .

Since Gw is discrete we get rm = max{|km|, |lm|, |nm|}
m→∞ ∞ . Now we can assume 

that there exists u = (x, y, z) ∈ R3 − {0} such that r−1
m umm→∞ u , thus

gm m→∞ P =

⎡⎢⎢⎣ 0 k0 + l0c + n0x l0d + n0 (k0 + l0c) +
(
n0
2

)
x + n0y

0 0 n0
0 0 0

⎤⎥⎥⎦ ,

Ker(P ) =

⎧⎪⎨⎪⎩
←−→e1, e2 if k0 + l0c + n0x = 0
←−−−−−−−−−−−−−−→
e1, [0 : −l0d : k0 + l0c] if k0 + l0c 
= 0, n0 = 0
e1 in other case

This last convergence implies that Λ∗
CoG is a real projective line. This set is not minimal 

because it has a global fixed point. �
2.4.2. b) Extended Inoue groups

These are discrete extensions of Inoue groups. We use the following normal forms.

g =
[1 1 s

0 1 1
0 0 1

]
; s ∈ C . (2.1)

Definition 2.8. An extended Inoue group is a discrete group Ĩno(L, x, y, z) generated by 
matrices with normal forms g, γ1 and the group I.

We have:
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Lemma 2.9. Up to conjugation, every extended Inoue group is of type:

Ĩno(L, x, y, z) =
{
h · gk · γm

1 , k,m ∈ Z, h ∈ I
}
,

with a, b, c, x ∈ C, k, m ∈ Z and (u, v) ∈ L satisfying that if we let π1, π2 be the coordinate 
functions in C2, then:

i) (0, x − z), (0, π1(L)), (0, z · π2(L)) are in L.
ii) L has rank at least 3; and
iii) either z /∈ R or x = y = z = 0; hence the control group has rank 2.

The proof follows from Proposition 5.21.

Corollary 2.10. The extended Inoue groups have an infinite discrete control group. There 
is not an open invariant set of P 2

C where the group acts properly discontinuously; the sets 
ΩKul and Eq are both empty, the Kulkarni limit set is all of P 2

C and the Conze-Guivarc’h 
limit set contains at least a complex projective line.

Proof. By Lemma 2.9 the group I in 2.4.1 is a dual torus group with rank at least three. 
By Lemma 2.5 we deduce L0(I) = P 2

C, where L0 is the first set in Kulkarni’s limit set, 
so there is no open set on which an extended Inoue group acts properly discontinuously. 
Finally, we remark that by the last statement in the lemma above, the control group is 
the additive group spanned by z and 1, so by 2.9 we conclude that the control group has 
rank two and it is discrete. Note that the kernel of the control morphism is a dual torus 
group of type III, so Eq and ΩKul are both empty, the Kulkarni limit set is all of P 2

C

and the Conze-Guivarc’h limit set contains at least one complex projective line. �
The following is an immediate consequence of Theorem 2.7 and Lemma 2.9:

Proposition 2.11.

(1) The Inoue Kleinian groups have limit set a cone of lines over a circle, the kernel of 
the control morphism is Z ⊕Z and the control group is Z.

(2) The Inoue non-Kleinian groups have limit set all of P 2
C, the kernel of the control 

morphism is Z ⊕ Z and the control group is Z.
(3) The extended Inoue groups are finite extensions of Inoue groups (Kleinian or not). 

They have limit set all of P 2
C, the kernel of the control morphism is Zk for some 

k ≥ 3, and the control group is Z ⊕Z.

2.5. Kodaira groups

There are:
a) Abelian Kodaira groups, K0.
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b) Extended Kodaira groups Ki, i = 1, . . . , 5. These are all non-Abelian; they are 
finite extensions of Abelian Kodaira groups and they split into six types according to 
their limit set and the control group. These are:

(1) Groups Ki, i = 1, 2, 3. These three classes are constructed in a similar way (see 
Lemma 2.16 below).
• The groups K1 have limit set a complex projective line and discrete control group.
• The groups K2 have limit set a cone of lines over a circle and non-discrete control 
group.
• The groups K3 have limit set the whole P 2

C.
(2) The groups K4, K5 and K6 are obtained by a different type of extensions. These also 

have limit set the whole of P 2
C and the three classes are distinguished by the rank of 

their control groups, which are always non-discrete.

2.5.1. Abelian Kodaira groups
These are Abelian subgroups of fundamental groups of Kodaira surfaces; they are 

finite extensions of dual torus groups of type I.

Definition 2.12. A Kodaira group is a discrete group in PSL(3, C) such that each element 
in the group can be written in the form:

⎡⎢⎣ 1 a b

0 1 a

0 0 1

⎤⎥⎦ .

We have:

Lemma 2.13. Let G be a Kodaira group, then G is, weakly-controllable and isomorphic to 
Ker(G) ⊕C(G) where C(G) is the control group and Ker(G) is the kernel of the control 
morphism. Also:

• We have RankG ≤ 4
• The Kulkarni limit set is a line.
• Its complement ΩKul coincides with the equicontinuity set and is the largest open set 

on which the group acts properly discontinuously.
• The Conze-Guivarc’h limit set of the action on the dual P̌ 2

C is a point, the dual of 
ΛKul, and it is the unique minimal set.

Proof. That the group is a direct sum as stated is immediate. The claim about the rank 
follows from [30]. Now let (gn) ⊂ G be a sequence of distinct elements, then there exist 
sequences (an), (bn) ⊂ C such that:
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gn =
[1 an bn

0 1 an
0 0 1

]
.

This implies that there exist a, b, c, d ∈ C satisfying: |a| + |b| 
= 0, |c| + |d| 
= 0 and

gn n→∞ g =
[0 a b

0 0 a
0 0 0

]
; and g∗n n→∞ h =

[0 0 0
c 0 0
d c 0

]
.

Thus Ker(g) ⊂ ←−→e1, e2. The rest of the proof is as in the elliptic case. �
The next result enables us to provide a normal form for the Kodaira groups.

Lemma 2.14. A group G is an Abelian Kodaira group if and only if there is W ⊂ C, 
an additive discrete subgroup, R ⊂ C is an additive subgroup and L : R → C a group 
morphism such that Rank(W ) + Rank(R) ≤ 4,

G = K0(W,R,L) =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1 a L(a) + a2/2 + w

0 1 a

0 0 1

⎤⎥⎦ : a ∈ R,w ∈ W

⎫⎪⎬⎪⎭ ,

and

lim
n→∞

L(xn) + wn = ∞

for every sequence (wn) ∈ W and every sequence (xn) ⊂ R converging to 0.

As an example, consider w1 = 1, w2 =
√

2, w3 = eπi/4, w4 =
√

2eπi/4, and let W be 
SpanZ{w1, w2, w3, w4}. Define L : W → C by setting L(1) = 2−1, L(

√
2) =

√
2 − 1, 

L(eπi/4) = i + 2−1, L(
√

2eπi/4) =
√

2i + 1, and then extend by linearity:

L

⎛⎝ 4∑
j=1

njwj

⎞⎠ =
4∑

j=1
njL(wj) .

Then

K0(W,L) =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1 a L(a) + a22−1

0 1 a

0 0 1

⎤⎥⎦ : a ∈ W

⎫⎪⎬⎪⎭
is weakly-controllable and isomorphic to Z ⊕ Z ⊕ Z ⊕ Z. If we let Π be its control 
morphism, then a straightforward computation shows that its kernel Ker(Π|K0(W,L)) is 
trivial and the control group is a dense subgroup of C.
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Similarly, let W be now SpanZ({1, 
√

2, eπi/4}) and define L : W → C as in the 
previous example. Then,

{[1 x L(x) + x2/2 + ik
0 1 x
0 0 1

]
: x ∈ W,k ∈ Z

}

is a weakly-controllable discrete group isomorphic to Z3 ⊕ Z. We find that the kernel 
of the projection to the control group is isomorphic to Z and the control group is non-
discrete and isomorphic to Z2.

2.5.2. Extended Kodaira groups K1, K2, K3

Let W be a non-trivial additive subgroup of C and define a normal form:

hw =
[1 0 w

0 1 0
0 0 1

]
, w ∈ W − {0} .

Definition 2.15. An extended Kodaira group Ki, i = 1, 2, 3, is a discrete group generated 
by a normal form hw and the normal forms γ1 and g

g =
[1 1 0

0 1 1
0 0 1

]
; γ1 =

[1 x + z y
0 1 z
0 0 1

]
; x, y, z ∈ C .

That is: Ki = 〈hw, g, γ1〉.

Lemma 2.16. We have:

(1) The group is K1 ⇔ its control group is discrete ⇔ z ∈ C \R;
(2) The group is K2 ⇔ its control group is non-discrete and W has rank 1 ⇔ W has 

rank 1 and z ∈ R \Q;
(3) The group is K3 ⇔ W has rank > 1 and z ∈ R \Q. In this case the control group 

is automatically non-discrete.

As an example of type III groups take W = {(m + ni, k + li) ∈ C2 : k, l, m, n ∈ Z}, 
a = b = 0 and c = i, we get Heis (3, Z[i]), the Heisenberg group with coefficients in Z[i].

Lemma 2.17. The non- Kodaira groups Ki, i = 1, 2, 3, can be written as:

Ki =

⎧⎨⎩
[1 0 w

0 1 0
0 0 1

][1 1 0
0 1 1
0 0 1

]n [1 x + z y
0 1 z
0 0 1

]m
: m,n ∈ Z, w ∈ W

⎫⎬⎭
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Hence these are semi direct products of the form (ZRank(W ) �Z) �Z. The kernel of the 
control morphism is isomorphic to ZRank(W ). The control group is isomorphic to Z ⊕Z

and it is discrete if and only if the group is of type K1.

Proof. The proof is a direct consequence of Theorem 5.15. �
Lemma 2.18. For the non- Kodaira groups K1 and K2 one has:

• The Kulkarni discontinuity region coincides with the equicontinuity set and is the 
largest open set on which the group acts properly discontinuously.

• The Conze-Guivarc’h limit set is the dual of ΛKul . It is a point if the group is K1
and a real projective line if the group is K2.

Proof. The proof is similar to the other cases. Let (gn) ⊂ K1 be a sequence of distinct 
elements. Then there exist sequences (kn), (mn) ⊂ Z and (wn) ⊂ W such that: gn is:[

1 kn+mn(x+z) 1
2

(
(kn+mnz)(kn+mnz−1)+mn(2y+z(−x+1−z))+2wn+m2

nzx
)

0 1 kn+mnz
0 0 1

]
,

and the inverse transpose matrix g∗n is:[ 1 0 0
−kn−mnx−mnz 1 0

1/2
(
kn+k2

n−2wn−2mny+2mnkn(x+z)+mn(1+mn)z(x+z)
)

−kn−mnz 1

]
.

Case 1. (kn), (mn) are eventually constant. In this case wn n→∞ ∞ and therefore

gn n→∞

[0 0 1
0 0 0
0 0 0

]
.

In the sequel we will assume that either (kn) or (mn) is a sequence of distinct elements.

Case 2. kn + mnz n→∞ u ∈ C . So z ∈ R − Q and therefore W has rank 1 

and kn,mnn→∞ ∞ . Let w ∈ C∗ be the generator of W and define ρn =

max{|mn|, 2−1|mn(2y + z(−x + 1 − z)) + 2wn + m2
nzx|}, so we can assume that there 

are a1, b1 ∈ C such that

ρ−1
n (mn, 2−1(mn(2y + z(−x + 1 − z)) + 2wn + m2

nzx))
n→∞ (a1, b1) .

Thus

gn n→∞

[0 a1x b1
0 0 0

]
= g .
0 0 0



W. Barrera et al. / Linear Algebra and its Applications 653 (2022) 430–500 451
For simplicity assume a1 
= 0, so there is l ∈ Z and (ln) ⊂ Z such that

2b1a−1
1 = 2y + z(−lw + 1 − z) + w lim

n→∞
(2lnm−1

n + mnzl)

where r = limn→∞(2lnm−1
n + mnzl) ∈ R. Now a straightforward computation shows:

Ker(g) =
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
e1, (2lw)−1(2y + z(1 − z) + w(r − lz))e2 − e3 .

Case 3. hn = kn + mnzn→∞ ∞ . Let us define:

ρn = max
{
|hn + mnx|, |

1
2(hn(hn − 1) + mn(2y + z(1 − x− z)) + 2wn + m2

nzx)|, |hn|
}

Then we can assume that there are a1, b1, c1 ∈ C such that |a1| + |b1| + |c1| 
= 0 and

ρ−1
n (kn + mn(x + z))

n→∞ a1

ρ−1
n (1

2(hn(hn − 1) + mn(2y + z(1 − x− z)) + 2wn + m2
nzx))

n→∞ b1

ρ−1
n (kn + mnz) n→∞ c1 .

(2.2)

Hence

gn n→∞

[0 a1 b1
0 0 c1
0 0 0

]
= g .

If c1 
= 0 we get that Ker(g) is either a point or ←−→e1, e2, so let us assume c1 = 0. Under 
this assumption by equation (2.2) we deduce:

ρ−1
n mn n→∞ a1x

−1 ,

ρ−1
n (1

2((kn + mnz)2 + 2wn + m2
nzx))

n→∞ b1 − a12−1x−1(2y + z(−x + 1 − z)).

At this point observe that in this case a1 = 0 implies Ker(g) = ←−→e1, e2, so we will assume 
a1 
= 0.

Claim 1. We have z ∈ R. Observe that

lim
n→∞

m−1
n (kn + mnz) = lim

n→∞
(ρn)−1(kn + mnz) · lim

n→∞
ρn
mn

= a−1
1 · 0 = 0 .

Thus limn→∞ m−1
n kn = −z ∈ R.

As a consequence of the previous claim and Lemma 2.17 we deduce that W has rank 
1 and z ∈ R −Q. Moreover, by our previous analysis the only interesting case is W � R. 
As before let w be the generator of W , thus there are (ln)n≥0 ⊂ Z such that
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g =
[0 x 2−1(2y + z(−l0w + 1 − z) + s)

0 0 0
0 0 0

]
,

where s = limn→∞ m−1
n (1

2 ((kn+mnz)2+2lnw+m2
nzl0w)). Now observe that the following 

limits exist and they are finite.

lim
n→∞

1
mn

(kn + mnz)2; 2s2 = lim
n→∞

m−1
n (2ln + m2

nzl0) .

Thus s = s1 + s2w and

g =
[0 l0w 2−1(2y + z(1 − z) + s1 + (s2 − l0)w)

0 0 0
0 0 0

]
,

which concludes the proof. �
2.5.3. Extended Kodaira groups K4, K5

These are similar to the previous groups, but with one and two more generators, 
respectively. We introduce the following normal forms:

γ2 =
[1 a + c b

0 1 c
0 0 1

]
, γ3 =

[1 d + f e
0 1 f
0 0 1

]
,

with a, b, c, d, e, f ∈ C. Notice that γ1, γ2, γ3 are matrices of the same type evaluated on 
different parameters. In each case we will specify the conditions on all these parameters.

Let k, l, m ∈ Z, w ∈ W , with W as above, and x, a, b, c, d, e, f ∈ C satisfy: a 
= 0, 
{a, d, af −dc} ⊂ W , and let K4 be the group depending on all these parameters, defined 
by

K4 =
{
hw · gk · γm

1 · γn
2 : k,m, n ∈ Z, w ∈ W

}
.

We assume further that for every real line � ⊂ C passing through the origin we have 
rank(� ∩SpanZ{1, c, f}) ≤ 2. This condition springs from [32] where the author considers 
the density properties of finitely generated subgroups of rational points on a commutative 
algebraic group over a number field. Additionally the following restrictions should be 
imposed over the coefficients in order to get discrete groups:

(1) if d = 0 then f /∈ R;
(2) if ad−1 /∈ R then there are r1, r2 ∈ Q such that

c = a(f − r1) − r2 .

d
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We now take the previous K4-groups and add one more generator. Define

K5 = {hw · gk · γm
1 · γm

2 · γl
3 : k,m, n, l ∈ Z, w ∈ W} ,

where x, a, b, c, d, e, f, g, h, j ∈ C are subject to the conditions: a(|d| + |g|) 
= 0, 
{a, d, g, dj − gf, af − cd, aj − cg} ⊂ W . Furthermore:

(1) If g = 0, then there are r0, r1, r2, r3 ∈ Q such that r1 
= 0 and

(r2 − r0)2 + 4r1r3 < 0;

such that:

j =
r2 + r0 ±

√
(r2 − r0)2 + 4r1r3

2 ;

a = d
r2 − r0 ±

√
(r2 − r0)2 + 4r1r3
2r1

;

c = (f − r4)
r2 − r0 ±

√
(r2 − r0)2 + 4r1r3
2r1

− r5

(2) If ad−1 /∈ R, then there are r1, r2, s1, t1, s2, t2, s3, t3 ∈ R such that:

g = r1a + r2d , r2t2 
= t3 ,

f = A2 ± (c + t2)
√
A1

2 (r2t2 − t3)
, j = A3 ± (cr2 + t3)

√
A1

2 (r2t2 − t3)
,

where:

A1 =(−r2s2 + r1t2 − s3 − t1)2 − 4 (r2s1t2 − r1s2t3 + r2s2s3 − r1t1t2 + s3t1 − s1t3) ,

A2 = − cr2s2 − cr1t2 + cs3 − ct1 + r2s2t2 − r1t
2
2 + s3t2 − 2s2t3 − t1t2 ,

A3 =r2 (cr1t2 + s3 (c + 2t2) − ct1 − s2t3) + t3 (−r1 (2c + t2) − s3 − t1) − cr22s2 .

These groups have the following properties:

Lemma 2.19. The K4 and K5 groups are all weakly-controllable, discrete, with kernel 
isomorphic to Z ⊕ Z and their control group is non-discrete and isomorphic to Z ⊕
Z ⊕ Z and Z ⊕ Z ⊕ Z ⊕ Z respectively. Moreover the Kulkarni limit set is P 2

C and the 
equicontinuity regions is empty.

Proof. For the proof of this lemma see Lemma 5.24 and Propositions 5.25, 5.26. �
Remark 2.20. We notice that in these families we can have examples where the control 
group Π(Ki) is non-discrete but is not dense in C, as well as examples where Π(Ki) is 
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dense in C. The control group by definition is a subgroup of PSL(2, C), yet, in the cases 
we consider here, each element in the control group is a translation, so we can think of 
the control group as being an additive subgroup of C.

For instance, taking W = Z[i], x = b = e = d = 0, f = i and c an irrational number, 
we generate a discrete group with a non-discrete dense subgroup of C as control group. 
However, taking W = Z[i], x = a = b = e = 0, c = i, d = 1 and f = r + is, where 
r, s ∈ R satisfy that {1, r, s} is a Q-linearly independent set, then the corresponding 
discrete group has a dense subgroup of C as control group. This shows that unlike the 1-
dimensional case where purely parabolic groups have very simple dynamics, in dimension 
2 the two different dynamics described above, both fairly rich, exist for control groups of 
purely parabolic groups. This type of behavior is important when studying non-discrete 
subgroups of Lie groups, see for instance [27,32].

3. The classification theorems

We now provide a complete classification of the purely parabolic discrete subgroups 
of PSL(3, C).

Theorem 3.1. Let G ⊂ PSL(3, C) be a complex Kleinian discrete subgroup. Then G does 
not contain loxodromic elements if, and only if, there exists a normal subgroup G0 ⊂ G

of finite index such that G0 is purely parabolic and it is conjugate to one (and only one) 
of the following groups:

(1) An Elliptic group as in Subsection 2.1.
(2) A Torus group, as in Subsection 2.2.
(3) A dual Torus group of type I and II, as in Definition 2.4.
(4) A Kleinian Inoue group, as in Theorem 2.7.
(5) An Kodaira group, as in Example 2.5.1.
(6) An extended Kodaira group K1 or K2, as in Definition 2.15.

Theorem 3.2. Let G ⊂ PSL(3, C) be a discrete subgroup which is not Kleinian. Then 
G does not contain loxodromic elements if, and only if, there exists a normal subgroup 
G0 ⊂ G of finite index such that G0 is purely parabolic and it is conjugate to one (and 
only one) of the following groups:

(1) A dual Torus group of type III, as in Definition 2.4.
(2) A discrete non Kleinian Inoue group, as in Theorem 2.7.
(3) An extended Inoue group, as in Definition 2.8.
(4) An extended Kodaira group K3, as in Definition 2.15.
(5) An extended Kodaira group K4 or K5, as in Subsection 2.5.3.

The rest of this article is devoted to proving Theorems 3.1 and 3.2.
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Concerning the dynamics we have:

Corollary 3.3. F Let G ⊂ PSL(3, C) be a complex Kleinian group. Then:

(1) The Kulkarni limit set ΛKul is:
• A pencil of lines over a circle if it is a dual torus group of type II, an Inoue group 

or extended Kodaira groups K2.
• One line otherwise.

(2) Concerning the Conze-Guivarc’h set Λ∗
CoG of the action on the dual P̌ 2

C:
• Is either a point or a real projective line.
• It is a minimal whenever is a single point.

Proof. The proof of part (1) goes as follows. By Theorem 3.2, G is virtually conjugated 
to one and only one of the groups given in Theorem 3.2. From Lemma 2.5, Theorem 2.7
and Corollary 2.10 we know the groups with limit set a cone of lines over a circle: these 
are dual torus group type II, Kleinian Inoue and K2 groups and for the remaining ones 
in Theorem 3.2 its limit set is a line.

In order to proof of part (2) we apply Lemmas 2.2, 2.5, 2.13, 2.18, Theorem 2.7 and 
Corollary 2.10, the Conze-Guivarc’h limit set is either a real projective line or a point. �

Concerning the region of discontinuity, this is empty in all non-Kleinian cases. In the 
Kleinian case we have:

Corollary 3.4. Let G ⊂ PSL(3, C) be a purely parabolic complex Kleinian group. Then 
ΩKul is biholomorphic to:

(1) C2 if ΛKul is a line.
(2) In other case is C × (H+ ∪H−) where H+ is the upper half plane in C and H− is 

the lower half plane in C.

Proof. The proof follows immediately from Theorem 3.3 item (1) because when the limit 
set is a line, then its complement in P 2

C is biholomorphic to C2, and if the limit set is a 
pencil of lines over a circle, then its complement is biholomorphic to C× (H+∪H−). �

4. Dynamics of triangularizable groups without loxodromic elements

In this section we use techniques of dynamical systems in order to show that discrete 
subgroups of PSL(3, C) without loxodromic elements are triangularizable, see Theo-
rem 4.3. Moreover we show that these groups are either subgroups of Heis (3, C) or they 
can be described in a very precise way, see Theorem 4.5.
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4.1. Purely parabolic groups are virtually triangularizable

Recall that a discrete group G ⊂ PSL(3, C) acts strongly irreducibly on P 2
C if there 

are no points or lines with finite orbit. Also a group G ⊂ PSL(3, C) is affine if G has an 
invariant complex line in P 2

C. Now we have:

Lemma 4.1. If G ⊂ PSL(3, C) is a discrete group without loxodromic elements, then G
is either affine or weakly-controllable.

Proof. By [3, Proposition 4.10], discrete groups in PSL(3, C) acting strongly irreducibly 
on P 2

C contain loxodromic elements, so we can assume that there is a non-empty proper 
subspace l ⊂ P 2

C such that l has a finite orbit under the action of G. Observe that by 
duality we can assume l is a point; let l1, . . . , lk be the orbit of l under G.

Let U be the projective space generated by {l1, . . . , lk}; clearly U is G-invariant. We 
claim that U is either a point or a line. Assume, on the contrary, that U = P 2

C. Let g ∈ G

be a parabolic element, then there exist s ∈ {1, . . . , k} such that ls /∈ ΛKul(〈g〉) then ls
has infinite orbit under the cyclic group 〈g〉, which is a contradiction. �

If G ⊂ PSL(3, C) does not contain loxodromic elements, then Lemma 4.1 implies that 
G has either an invariant line or an invariant pencil of lines. The following lemma gives 
restrictions upon the action of G on the invariant line or pencil.

Lemma 4.2. Let G ⊂ PSL(3, C) be a discrete group without loxodromic elements.

(1) If G is affine, then the action of G on the invariant line does not contain a subgroup 
conjugate to a dense subgroup of SO(3).

(2) If G is weakly-controllable, then the control group of G does not contain a subgroup 
conjugate to a dense subgroup of SO(3).

Proof. Let us prove only the case where G is weakly-controllable, the proof in the affine 
case is similar. As before, let Π be the projection to the control group. Let us proceed 
by contradiction, let (gn)n∈N be an enumeration of G and define Hm = Π(〈g1, . . . gm〉). 
If each group is finite, then by the classification of subgroups in PSL(2, C) with finite 
order, we conclude that for m large Hm is either cyclic or dihedral, and therefore the 
control group Π(G) is a subgroup of the infinite dihedral group; this is not possible since 
Π(G) is dense in SO(3). Now, applying Selberg’s Lemma to the Hm’s, we deduce that 
Π(G) contains an element with infinite order. On the other hand, since Π(G) is dense 
in SO(3) and by Tits alternative we conclude that for m large, Hm contains a rank two 
free subgroup. To conclude, let g1, g2 ∈ G be such that Π(g1), Π(g2) generate a rank two 
free group, then g1g2g

−1
1 g−1

2 has a lift ρ ∈ SL(3, C), given by

ρ =
(

1 b

0 B

)
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where B ∈ SO(3) has infinite order and b ∈ C2. Clearly ρ is non-diagonalizable, with 
unitary eigenvalues and infinite order. Therefore G is non-discrete. �

Now we prove the following extension of the Lie-Kolchin Theorem [29], in which we 
allow the existence of non-unipotent elements.

Theorem 4.3. Let G ⊂ PSL(3,C) be a discrete group without loxodromic elements. Then 
there exists a normal subgroup G0 of G with finite index such that G0 leaves invariant a 
full flag in P 2

C. Hence the group G0 is simultaneously triangularizable.

Proof. Let G ⊂ PSL(3, C) be a discrete group without loxodromic elements. Then by 
Lemma 4.1 we know that G has a proper non-empty projective subspace p invariant under 
G. Here we prove the case where p is a point; the other case is analogous, considering a 
line � as a point in P̌ 2

C. Since G does not contain loxodromic elements, neither Π(G) does, 
and by Corollary 13.7 in [17] we have that P 1

C −Eq(Π(G)) is either empty or contains a 
single point. If P 1

C−Eq(Π(G)) is a single point, then G is simultaneously triangularizable. 
So we assume P 1

C = Eq(Π(G)). Then Lemma 4.2 implies that Π(G) is either finite or it is 
a subgroup of the infinite dihedral group Dih∞. If Π(G) is finite, it is enough to consider 
G0 = Ker(Π|G). If Π(G) ⊂ Dih∞ then consider G0 = {g ∈ G : Π(g) ∈ Rot∞}. �
Corollary 4.4. Let G ⊂ PSL(3, C) be a discrete group without loxodromic elements, then 
G is virtually finitely generated.

Proof. Since G does not contain loxodromic elements, we know that G contains a finite 
index subgroup which is triangularizable and therefore solvable. It is well known that 
discrete solvable groups are finitely generated, see [2]. �
4.2. A Lie-Kolchin theorem for purely parabolic groups

The following is a slight extension of the Lie-Kolchin Theorem.

Theorem 4.5. Let G be a purely parabolic discrete group in PSL(3, C). Then G is either 
virtually unipotent or it contains a subgroup of finite index which is conjugate to:

G =
{[1 w 0

0 1 0
0 0 η(w)

]
: w ∈ W, n ∈ Z

}
,

with W a discrete additive subgroup of C and η : W → S1 a group morphism.

This subsection is divided into four parts: in 4.2.1 and 4.2.2 we show that every 
discrete solvable group with an irrational ellipto-parabolic element is commutative, see 
Corollary 4.14. In Subsection 4.2.3 we give a list of all Commutative Lie groups of 
PSL(3, C). Finally, in 4.2.4 we prove Theorem 4.5 and we also prove Theorem 5.20.
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4.2.1. Solvable groups with an irrational ellipto-parabolic element

Lemma 4.6. Let α ∈ S1 be an element with infinite order and a, b, c, x, y, z ∈ C. If x, y
are not both zero, then the group

G =
〈
g1 =

[1 x z
0 1 y
0 0 1

]
, g2 =

[1 a b
0 α3 c
0 0 1

]〉
,

is non-discrete.

Proof. Let h ∈ PSL(3, C) be given by:

h =

⎡⎣1 a(1 − α3)−1 b
0 1 −c(1 − α3)−1

0 0 1

⎤⎦ .

A straightforward computation shows:

hg2h
−1 =

⎡⎣1 0 b + ac(1 − α3)−1

0 α3 0
0 0 1

⎤⎦ , hg1h
−1 =

[1 x z + cx(1 − α3)−1

0 1 y
0 0 1

]
.

We take a = c = 0. Set gn = gn2 g1g
−n
2 and observe that we have:

gn = gn2 g1g
−n
2 =

⎡⎣1 xα−3n z
0 1 yα3n

0 0 1

⎤⎦ .

Clearly (gn) contains a convergent sequence of distinct elements, proving the lemma. �
Lemma 4.7. Let α ∈ S1 be an element with infinite order and x, y, z, β, μ, ν ∈ C. If x, y
are not both zero, then the group

G =
〈
g1 =

[1 z x
0 1 y
0 0 1

]
, g2 =

[1 β μ
0 1 ν
0 0 α−3

]〉
,

is non-discrete.

Proof. Notice first that β = 0 implies that g2 is an elliptic element with infinite order, 
which makes G non-discrete. So we assume that β 
= 0 and G is discrete. An easy 
computation shows:

G0 = [G,G] =
{[1 0 a

0 1 b

]
: (a, b) ∈ L

}
,

0 0 1
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where L is a discrete additive subgroup of C2. Consider g = [gij ] = [g2, [g2, g1]]. Then g ∈
G0 and g13g23 
= 0, so after conjugating with an upper triangular element, if necessary, 
we can assume that (1, 1) ∈ L. A straightforward computation shows:

gn2

[1 0 1
0 1 1
0 0 1

]
g−n
2 =

⎡⎣1 0 α3n(nβ + 1)
0 1 α3n

0 0 1

⎤⎦ ;

thus {α3n(nβ + 1, 1) : n ∈ Z} ⊂ L. Now we claim:

Claim 1. The set A = {α3n(nβ+1, 1) : n = 0, 1, 2, 3} is R-linearly independent. Assume, 
on the contrary, that there are r0, r1, r2, r3 ∈ R not all equal to 0, such that:

0 =
∑3

j=0 rjα
3j(jβ + 1, 1)

=
(∑3

j=0 rjα
3j , 0
)

+
∑3

j=0 βrjα
3j(j, 1)

=
∑3

j=0 βrjα
3j(j, 1) .

Thus {α3j(j, 1) : j = 0, 1, 2, 3} is R-linearly dependent, which is a contradiction.

Claim 2. A = {α3j(j, 1) : j = 0, 1, 2, 3, 4} is a Q-linearly dependent set. Observe that B =
{α3j(βj + 1, 1) : j = 0, 1, 2, 3, 4} is Q-linearly dependent; then using similar arguments 
as in the previous claim, we get that A is Q-linearly dependent.

Claim 3. There is d ∈ C∗ such that (d, 0) ∈ L. By Lemma 7.2, there exists c ∈ C∗ and 
m0, . . . , m5 ∈ Z such that

(c, 0) =
5∑

j=0
mjα

3j(j, 1),

thus

(cβ, 0) =
5∑

j=0
mjα

3j(jβ + 1, 1).

Finally, let (mn) ⊂ Z be such that (α3mn) is a sequence of distinct elements which 
converge to 1 and d ∈ C∗ is such that (d, 0) ∈ L. Then

gm = gmn
1

[1 0 d
0 1 0
0 0 1

]
g−mn
1 =

[1 0 α3mnd
0 1 0
0 0 1

]
n→∞

[1 0 d
0 1 0
0 0 1

]

which is a contradiction, so G is non-discrete. �
Lemma 4.8. Let α ∈ S1 be an element with infinite order and x, y, z, β, μ, ν ∈ C. If x, y
are not both zero, then the group
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G =
〈
g1 =

[1 x y
0 1 z
0 0 1

]
, g2 =

[
α−3 β μ
0 1 ν
0 0 1

]〉

is non-discrete.

Proof. Consider the group morphism ρ : PSL(3, C) → PSL(3, C) given by ρ([M ]) =
(M t)−1, here M t denotes the transpose matrix of M . We claim that ρ(G) is non-discrete, 
which will prove the lemma. For this, notice that Lemma 4.7 implies:

[0 0 1
0 1 0
1 0 0

]⎛⎝[1 x y
0 1 z
0 0 1

]t⎞⎠−1 [0 0 1
0 1 0
1 0 0

]
=
[1 −z zx− y

0 1 −x
0 0 1

]
,

[0 0 1
0 1 0
1 0 0

]⎛⎝[α−3 β μ
0 1 ν
0 0 1

]t⎞⎠−1 [0 0 1
0 1 0
1 0 0

]
=

⎡⎣1 −ν α3(βν − μ)
0 1 −βα3

0 0 α3

⎤⎦ ,

and the result follows. �
4.2.2. Commutator group of solvable discrete groups containing irrational 
ellipto-parabolic elements

In the following, if g ∈ GL (3, C), then gij will denote the ij-th element of the matrix 
g.

Definition 4.9. Define a group U+ in PSL(3, C) by:

U+ =
{[

g11 g12 g13
0 g22 g23
0 0 g33

]
: g11g22g33 = 1

}

and the group morphisms Π∗ : U+ → Mob(C) and λ12, λ23, λ13 : U+ → C∗, given by:

Π∗([gij ])z = g11g
−1
22 z + g12g

−1
22 ,

λ12([gij ]) = g11g
−1
22 ,

λ23([gij ]) = g22g
−1
33 ,

λ13([gij ]) = g11g
−1
33 .

Notice that the elements in U+ are equivalence classes of matrices. Yet, since different 
representatives of the same projective transformation differ by multiplication by a scalar, 
the above homomorphisms are all well-defined.

Lemma 4.10. Let G ⊂ U+ be a discrete group, then G contains a finite index torsion free 
subgroup G0 such that the following groups are torsion free: the control group Π(G0), the 
dual control group Π∗(G0), λ12(G0), λ13(G0) and λ23(G0).
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Proof. By Selberg’s lemma, we can assume that G is torsion free. Now consider the 
control group Π|G. Notice that:

Step 1. We can apply Selberg’s lemma to the group Π(G) to get a finite index subgroup 
G1 ⊂ Π(G) which is torsion free.

Step 2. Define G̃ = f−1(G1) and notice this is a finite index subgroup in G.
Step 3. Using Selberg’s lemma again, we get a torsion free, finite index subgroup G2 of 

G̃.
Step 4. Notice that G2, which is torsion free, has finite index in G and its control group 

Π(G2) also is torsion free. This proves the first statement.

We may now follow this same process with the groups G2 and Π∗|G2 , granting the 
existence of a finite index, torsion free subgroup G3 of G for which Π∗(G3) is torsion free. 
Notice this same process can be applied to the morphisms λ12(G0), λ13(G0) y λ23(G0), 
thus proving the lemma. �

The following corollary is an immediate consequence of Lemma 4.10 and it is of interest 
in itself:

Corollary 4.11. Let G be an upper triangular discrete subgroup of SL(3,C). Then G has 
a finite index subgroup that does not contain neither elliptic nor rational screws nor 
rational ellipto-parabolic elements.

We refer to [16, Chapter 4] for the definition of rational screws, which are all loxo-
dromic elements.

Lemma 4.12. Let G ⊂ U+ be a discrete group such that the groups λ12(G), λ23(G), λ13(G)
are torsion free. If g ∈ G is an irrational ellipto-parabolic element, then g belongs to the 
center of G, i.e., g commutes with every element of G.

Proof. Assume on the contrary, that there exists an element h = [hij ] ∈ G such that 
[g, h] 
= Id. Then there are x, y, z ∈ C such that

[g, h] =
[1 x y

0 1 z
0 0 1

]
.

Now consider the following cases:

Case 1. We have o(λ12(g)) = o(λ23(g)) = ∞, where o( ) means the order. Since G is 
discrete we deduce that λ13(g) = 1. By Lemma 4.6 we have x = z = 0 but y 
= 0. We 
deduce Π∗[g, h] = Π[g, h] = Id, g13 
= 0 and o(λ13(h)) = ∞, therefore
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hngh−n =

⎡⎣g11 g12 (λ13(h))ng13
0 g−2

11 g23
0 0 g11

⎤⎦ .
So the sequence (hngh−n)n∈Z contains a subsequence of distinct elements which con-
verges to a projective transformation and G is non-discrete.

Case 2. We have o(λ12(g)) = ∞ and λ23(g) = 1. Since G is discrete we deduce that 
g23 
= 0. By Lemma 4.8, we deduce x = y = 0 but z 
= 0. Therefore Π∗[g, h] = Id and 
o(λ23(h)) = ∞. Then:

hngh−n =

⎡⎣g−2
11 g12 g13
0 g11 λn

23(h)g23
0 0 g11

⎤⎦ .

Thus (hngh−n)n∈Z contains a subsequence of distinct elements which converges to a 
projective transformation.

Case 3. We have o(λ23(g)) = ∞ and λ12(g) = 1. Again, since G is discrete we deduce 
g12 
= 0. By Lemma 4.7 we deduce x = z = 0 but y 
= 0. Therefore Π[g, h] = Id and 
o(λ12(h)) = ∞. As in the previous cases we get:

hngh−n =

⎡⎣g11 λn
23(h)g12 g13

0 g11 g23
0 0 g−2

11

⎤⎦ ,

so (hngh−n) contains a subsequence of distinct elements which converges to a projective 
transformation.

Thus we have shown that under the assumption that G is not commutative we get 
that G is non-discrete, which is a contradiction. �
Lemma 4.13. Let G ⊂ U+ be a discrete group such that the groups λ12(G), λ23(G), 
λ13(G) are torsion free. If G contains an irrational ellipto-parabolic element, then G is 
commutative.

Proof. We consider first the case where o(λ12(g)) = o(λ23(g)) = ∞. Since G is discrete 
we deduce that λ13(g) = 1. Then there exists h ∈ U+ such that

hgh−1 =

⎡⎣g11 0 a
0 g−2

11 0
0 0 g11

⎤⎦ ,
where a 
= 0. Since every element β ∈ G commutes with g we have

hβh−1 =

⎡⎣β11 0 b
0 β−2

11 0
0 0 β

⎤⎦ .

11
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This shows that G is commutative.
We can apply similar arguments when either o(λ12(g)) or o(λ23(g)) is finite to show 

that in all cases G is commutative. �
The following result is a consequence of Corollary 4.11 and Lemmas 4.12, 4.13

Corollary 4.14. Every discrete solvable group with an irrational ellipto-parabolic element, 
is commutative.

4.2.3. Abelian Lie groups
The following list of Lie groups is used in Theorem 4.16.

Definition 4.15. We set:

C1 =
{[

α−2 0 0
0 α β
0 0 α

]
: α ∈ C∗, β ∈ C

}
, C2 =

{[1 0 β
0 1 γ
0 0 1

]
: β, γ ∈ C

}
,

C3 =
{[1 α β

0 1 α
0 0 1

]
: α, β ∈ C

}
, C4 =

{[1 α β
0 1 0
0 0 1

]
: α, β ∈ C

}
,

C5 = Diag(3,C) =
{[

α 0 0
0 β 0
0 0 α−1β−1

]
: α, β ∈ C∗

}
.

Theorem 4.16. Let G ⊂ U+ be a commutative group. Then G is conjugate to a group 
G̃ ⊂ Cj for some j = 1, 2, 3, 4, 5.

This theorem is proved in the Appendix 6 at the end of this paper.

4.2.4. Proof of Theorem 4.5

Lemma 4.17. Let G ⊂ U+ be a discrete torsion free group such that the group Ker(Π|G)
is trivial and each element in g ∈ G has the form

[
α−2 0 0
0 α β
0 0 α

]
,

where | α |= 1. Then there exists W ⊂ C a discrete additive subgroup and a group 
morphism η : W → S1 such that:

G =
{[

η(w)−2 0 0
0 η(w) η(w)w

]
: w ∈ W

}
.

0 0 η(w)
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Proof. Let us define ζ : G → C by ζ([gij ]) = g23g
−1
33 . A standard computation shows 

that ζ is a group morphism and Ker(ζ) is trivial. Then the following is a well defined 
group morphism

η : ζ(G) → C∗

x �→ π22(ζ−1(x)).

Clearly

G =
{[

η(w)−2 0 0
0 η(w) η(w)w
0 0 η(w)

]
: w ∈ ζ(G)

}
. (4.1)

We claim that the group ζ(G) is discrete. Assume on the contrary, that ζ(G) is 
non-discrete. Then there exists a sequence (gn)n∈N ⊂ G of distinct elements such that 
(ζ(gn))n∈N is a sequence of distinct elements and ζ(gn)

n→∞ 1 . Then

gn =
[
η(ζ(gn))−2 0 0

0 η(ζ(gn)) η(ζ(gn))ζ(gn)
0 0 η(ζ(gn))

]
.

Since η(G) ⊂ S1 we deduce that (gn) contains a convergent subsequence, which is a 
contradiction. Therefore ζ(G) is discrete and we can take W = ζ(G). �
Lemma 4.18. Let G ⊂ PSL(3, C) be a discrete group where each element has the form:

g =
[
a−2 0 0
0 a 0
0 0 a

]
.

Then G is virtually cyclic.

Proof. Define ρ12 : G → R by ρ12(g) = log(|λ12|), clearly ρ12 is a well defined group 
morphism, Ker(ρ12) = {g ∈ g : |λ12| = 1} and ρ12(G) is discrete. Let G0 ⊂ G be a 
torsion free subgroup of G with finite index. Clearly ρ12|G0 is injective and ρ12(G0) is 
cyclic. �

Now we complete the proof of Theorem 4.5. Let G ⊂ U+ be a discrete group which 
contains an element g0 which satisfies max{o(λ12(g0)), o(λ23(g0))} = ∞. By Lemma 4.10, 
G contains a finite index subgroup G0 for which the groups λ12(G0), λ23(G0), Π∗(G0), 
Π(G0) and G0 itself, are all torsion free and finitely generated. Then by Lemma 4.12, 
G0 is. Therefore by Theorem 4.16 the group G0 is conjugate to a group G0 ⊂ G and 
G lives either in Diag(3, C) or in C1. Then the theorem follows from Lemmas 4.17 and 
4.18. �
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5. Discrete subgroups in Heis (3, C)

In this section we provide a full description of the discrete subgroups in

Heis (3,C) =
{[1 a b

0 1 c
0 0 1

]
: a, b, c ∈ C

}
.

We start with:

Proposition 5.1. The whole group Heis (3, C) is solvable and purely parabolic.

This follows from the fact that every element in Heis (3, C) has a lift to an upper 
diagonal matrix with all eigenvalues equal to 1. Then the proposition follows from the 
classification of the elements in PSL(3, C), see [16, Ch. 4].

We split this section in four parts: in Subsection 5.1, for each discrete subgroup G in 
Heis (3, C) we construct a region where a subgroup acts properly discontinuously; as a 
consequence we obtain Theorem 0.3 which is a decomposition theorem for G. In Subsec-
tion 5.2 we describe the subgroups of Heis (3, C) for which the kernel of the control map, 
Ker(Π|G), is finite. The main tool here is the description of groups provided by Theo-
rem 4.16. In 5.3 we describe the complex Kleinian groups in Heis (3, C) with Ker(Π|G)
infinite. Finally, in 5.4 we describe the discrete non-Kleinian groups in Heis (3, C) with 
Ker(Π|G) infinite.

5.1. A discontinuity region for discrete subgroups of Heis (3, C)

Let us consider G ⊂ Heis (3, C) a discrete group.

Definition 5.2. We set:

B(G) = {(gn) ⊂ G : (Π(gn)) converges in PSL(2,C)} ;
L(G) = {S ∈ SP(3,C) : there is (gn) ∈ B(G) converging to S} ;
L(G) = {� ∈ P̌ 2

C : there is S ∈ L(G) satisfying Ker(S) = �} ;
Ω(G) = P 2

C −
⋃

�∈L(G) � .

Now we have:

Lemma 5.3. For each � ∈ L(G) there exist a sequence (gn) ⊂ G of distinct elements and 
P ∈ SP(3, C), such that the sequence Π(gn) converges to Id, (gn) converges to P and 
Ker(P ) = �.

Proof. Let � ∈ L(G), then there exists a sequence (hn) ⊂ G of distinct elements and 
P ∈ SP(3, C), such that (Π(hn)) is a convergent sequence, hn converges to P and 
Ker(P ) = �. So we can assume that:
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hn =
[1 xn yn

0 1 zn
0 0 1

]
and P =

[0 x y
0 0 0
0 0 0

]
.

Set an = max{| xn |, | yn |}, then it is not hard to check that there is a subsequence 
(mn) ⊂ (n) such that ana−1

mn
converges to 0 as n goes to ∞. Then

gn = h−1
n hmn

=
[1 xmn

− xn −yn + xnzn + ymn
− xnzmn

0 1 zmn
− zn

0 0 1

]
.

Clearly Π(gn) converges to Id and gn n→∞ P . �
Lemma 5.4. Let G be discrete and such that Ker(Π|G) is infinite and Π(G) is non-trivial. 
If Ω(G) is non-empty, then:

(1) The group G acts properly discontinuously on Ω(G);
(2) The set Ω(G) is the largest open set on which G acts properly discontinuously.
(3) Each connected component of Ω(G) is homeomorphic to R4.

Proof. We first prove (1). It is clear that Ω(G) is open and G-invariant; also, since 
Ker(Π|G) is infinite and Π(G) is non-trivial, we have ←−→e1, e2 ⊂ P 2

C − Ω(G). Now let 
K ⊂ Ω(G) be a compact set and K(G) = {g ∈ G : g(K) ∩K 
= ∅}. Assume that K(G)
is infinite. Let (gn) be an enumeration of K(G), then there exists a subsequence of (gn), 
still denoted (gn), such that either (Π(gn)) converges to a projective transformation 
or Π(gn)

n→∞ [e2] uniformly on ←−→e2, e3 − {e2}. If (Π(gn)) converges to a projective 

transformation, we can find a subsequence (hn) ⊂ (gn) and α ∈ L(G) such that hn

converges to α. Thus Ker(α) ∈ L(G) and Im(α) = {e1}, therefore the accumulation set 
of {hn(K) : n ∈ N} is {e1}. Now, if Π(gn)

n→∞ [e2] uniformly on ←−→e2, e3 − {e2}, then

{(gn) : n ∈ N} ⊂ {g ∈ Π(G) : g(π(K)) ∩ π(K) 
= ∅},

which is not possible since ←−→e1, e2 ⊂ P 2
C − Ω(G) and we have proved Part (1).

Now we prove (2). Let Ω ⊂ P 2
C be open, non-empty, G invariant and such that G acts 

properly discontinuously on Ω and � ∈ L(G). Then there are (gn) ∈ B(G) and P ∈ L(G)
such that Ker(P ) = � and (gn) converges to P . By Lemma 5.3 we can assume that 
Π(gn) converges to Id. Proceeding as in Lemma 5.3, we conclude

g−1
n =

[1 −xn xnzn − yn
0 1 −zn
0 0 1

]
n→∞ P .

By Lemma 1.14 we deduce � ∩ Ω = ∅.
Now we prove (3). If Π(G) is discrete, then Ω(G) is Ω(Ker(Π|G)) by definition. From 

the definition of Ω(Ker(Π|G)) we get that Ω(Ker(Π|G)) = Eq(Ker(Π|G)) and from 
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Example 2.3 we know that Eq(Ker(Π|G)) is either C2 or (C×H+) ∪ (C×H−), proving 
the claim. So we now assume that Π(G) is non-discrete; define

C(G) = ←−→e2, e3 ∩
⋃

�∈L(G)

� ,

then C(G) is a closed Π(G)-invariant set in ←−→e2, e3, so C(G) is closed in P 2
C and Π(G)-

invariant set. Since Π(G) is non-discrete, there exists an additive Lie subgroup H ⊂ C

such that Π(G) = {z + b : b ∈ H}. Since C(G) − {e2} = Π(G)(C(G) − {e2}), we deduce 
that P 2

C − Ω(G) is a pencil of lines over a union of real projective lines in ←−→e2, e3, which 
are pairwise parallel in ←−→e2, e3 − {e2}. Thus each connected component of Ω(G) is a fiber 
bundle over R ×R with fiber C, hence homeomorphic to R4. �
Definition 5.5. We say that the sequences (an, bn), (xn, yn) ⊂ C2 are co-bounded if both 

sequences converge to ∞ and the sequence 
(

|an|+|bn|
|xn|+|yn|

)
is bounded and bounded away 

from 0.

Lemma 5.6. Let (an), (bn), (cn), (xn), (yn), (zn) ⊂ C be sequences of distinct elements 
such that:

(1) (cn) and (zn) converge to 0,
(2) (an, bn), (xn, yn) are co-bounded;
(3) [an : bn]

n→∞ [a : b] for some a, b;
(4) [xn : yn]

n→∞ [x : y] for some x, y;
(5) [a : b] 
= [x : y].

Then there exists w ∈ C \ {0} such that for each k, m ∈ N \ {0} we get:

g(n, k,m) =
[1 an bn

0 1 cn
0 0 1

]k [1 xn yn
0 1 zn
0 0 1

]m
n→∞

[0 ka + mxw kb + myw
0 0 0
0 0 0

]
.

Proof. Define rn = max{|an|, |bn|}, sn = max{|xn|, |yn|} and tn = max{sn, rn}. 
Since (an, bn), (xn, yn) are co-bounded we can assume there are r, s ∈ R \ {0} such 
that rnt−1

n n→∞ r and snt−1
n n→∞ s. Moreover, since [an : bn]

n→∞ [a : b] and 

[xn : yn]
n→∞ [x : y], we deduce that there are u, v ∈ C∗ such that

r−1
n (an, bn)

n→∞ u(a, b) ,

s−1
n (xn, yn)

n→∞ v(x, y) .

Then an easy computation shows:
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g(n, k,m)
n→∞

[0 ka + mxw kb + myw
0 0 0
0 0 0

]
,

where w = vs(ur)−1. �
Lemma 5.7. Let G ⊂ Heis(3, C) be a Kleinian group such that Π(G) is non-discrete and 
P 2
C − Ω(G) contains more than a line. Then Π(G) is isomorphic to R.

Proof. We have that Π(G) is a non-discrete subgroup of C, thus Π(G) must be iso-
morphic to C, R ⊕ Z or R, see Theorem 3.1 in [33]. Since G is complex Kleinian we 
deduce that Π(G) is isomorphic to either R ⊕ Z or R. Let us assume that Π(G) is 
isomorphic to R ⊕ Z. After conjugation, if necessary, we can assume that there exists 
s > 0 such that Π(G) = {r + msi : r ∈ R, m ∈ Z}. Moreover, since L(G) contains more 

than a line, we can find a line � ∈ L(G) containing e1 such that � =
←−−−−−−−→
e1, [0 : u : 1]

where Im(u) 
= 0. On the other hand, by Lemma 5.3 we can find (gn) ⊂ G and 

P ∈ SP(3, C) such that Π(gn)
n→∞ Id , gn n→∞ P and � = Ker(P ). Thus there 

are sequences (an), (bn), (cn) ⊂ C such that max{|an|, |bn|}n→∞ ∞ , cn n→∞ 0 , 

[an : bn]
n→∞ [a : b] and

gn =
[1 an bn

0 1 cn
0 0 1

]
; P =

[0 a b
0 0 0
0 0 0

]
. (5.1)

Thus � =
←−−−−−−−−→
[0 : b : −a], e1 and b = −ua.

Claim 1. There are functions f2 : Z → {real projective subspaces of ←−→e2, e3} and f1 : Z →
C such that:

(1) Sgn(Im(f1(m))) = Sgn(−m) for m large, here Sgn is the function sign;
(2) |Im(f1(m))|

|m|→∞
∞;

(3) the point [0 : b : −a] is in 
⋂

m∈Z f2(m);
(4) for each m ∈ Z we have [0 : f1(m) : 1] ∈ f2(m);
(5)
⋃

m∈Z
⋃

p∈f2(m)
←−→e1, p ⊂ P 2

C \ Ω(G).

Let h ∈ G be of the form

h =
[1 x y

0 1 is

]
, with x, y ∈ C and s ∈ R .
0 0 1
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If gn is given by Equation (5.1), then for each m ∈ Z we have:

h−mgnh
m =

[1 an bn − cnmx + isman
0 1 cn
0 0 1

]
n→∞

[0 a b + isma
0 0 0
0 0 0

]
.

If for each m ∈ Z we apply Lemma 5.6 to the respective sequences induced by the 
sequences (gn)n∈N and (h−mgnh

m)n∈N we deduce there exists wm ∈ C∗ such that:

Cm =
⋃

k,l∈Z.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
e1, [0 : kbwm + l(b + isma) : −kawm − la] ⊂ P 2

C − Ω(G) .

If for each m ∈ Z we define g2(m) as the closure of the set

[SpanZ({wm(b,−a), (b + isma,−a)}) − {0}],

then by Lemma 5.11 in [3] we have that g2(m) is a real projective space that contains 
[0 : b : −a]. Now define f1(m) = u − ism and observe that Cm =

⋃
p∈f2(m)

←−→e1, p and 
[0 : u − isma : 1] ∈ f2(m) for all m ∈ Z.

To conclude the proof let f1 and f2 be the functions given above, then

G

⎛⎝ ⋃
m∈Z

⋃
p∈f2(m)

←−→e1, p

⎞⎠ =
⋃

m∈Z

⋃
p∈Π(G)f2(m)

←−→e1, p = P 2
C .

This yields Ω(G) = ∅, which is a contradiction. �
The proof of the following lemma is straightforward and it is left to the reader:

Lemma 5.8. Set:

hC =
{(0 a b

0 0 c
0 0 0

)
: a, b, c ∈ C

}
.

Then the map exp : hC → Heis(3, C), given by

exp
(0 a b

0 0 c
0 0 0

)
=
[1 a b + 2−1ac

0 1 c
0 0 1

]

is a diffeomorphism with inverse log : Heis(3, C) → hC given by

log
[1 a b

0 1 c

]
=
(0 a b− 2−1ac

0 0 c

)
.

0 0 1 0 0 0



470 W. Barrera et al. / Linear Algebra and its Applications 653 (2022) 430–500
Now we prove Theorem 0.3 stated in the introduction:

Proof. Let us show part (1). We know that G is finitely generated, therefore Π(G) is 
finitely generated. If n = rank(Π(G)), let H = {g1, . . . , gn} ⊂ G be such that Π(G) is 
generated by Π(H). Let us consider the following equivalence relation in G: let us say 
that a ∼ b if and only if [a, b] = Id. If A1, . . . , An are the equivalence classes in G induced 
by ∼, then define B0 = Ker(Π|G)) and Bi = 〈Ai〉. Now it is clear that G = B0�· · ·�Bn.

Now let us prove Part (2). Let {h1, ...hk} ⊂ Ker(Π|G) be a minimal generating set 
for Ker(Π|G) and let {g1, . . . , gn} ⊂ G be such that {Π(g1), . . . , Π(gn)} is a minimal 
generating set for Π(G). Set

V =

⎧⎨⎩
k∑

j=1
αjlog(hj) +

n∑
j=1

βjlog(gj) : kj , lj ∈ Z

⎫⎬⎭ .

Claim 1. If hC is as in Lemma 5.8, then V is an additive subgroup of hC with rank n +k. 
For this, assume there are αj , βj ’s in Z such that

J =
k∑

j=1
αjlog(hj) +

n∑
j=1

βjlog(gj) = 0.

We can assume that the gj and hj can be expressed in the following way:

hj =
[1 uj vj

0 1 0
0 0 1

]
and gj =

[1 xj yj
0 1 zj
0 0 1

]
.

Since the hj generate Ker(Π|G) we have that SpanZ{(uj , vj) : j = 1, . . . , k} is discrete; 
and since the Π(gj) generate Π(G) we get that {z1, . . . zn} is a Z-linearly independent 
set. An easy computation shows:

J =

⎛⎝0
∑k

j=1 αjuj +
∑n

j=1 βjxj

∑k
j=1 αjvj +

∑n
j=1 βj(yj − 2−1xjzj)

0 0
∑n

j=1 βjzj
0 0 0

⎞⎠ .

Since exp(J) = Id, we get the following system of equations:

k∑
j=1

αjuj +
n∑

j=1
βjxj = 0,

n∑
j=1

βjzj = 0,

k∑
αjvj +

n∑
βj(yj − 2−1xjzj) = 0.
j=1 j=1
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Since {z1, . . . zn} is linearly independent over Z we conclude β1 = . . . = βn = 0. Hence ∑k
j=1 αj(uj , vj) = 0 and therefore α1 = . . . = αk = 0, proving the claim.
Let us define √

[G,G] = {h ∈ Heis (3,C) : h2 ∈ [G,G]}.

It is clear that 
√

[G,G] is a discrete subgroup contained in the center of Heis (3, C).

Claim 2. 
〈
G ∪
√

[G,G]
〉

is a discrete subgroup of Heis (3, C). Assume, on the con-

trary, that there exists a sequence (fn) ⊂
〈
G ∪
√

[G,G]
〉

of distinct elements such that 
fn n→∞ Id, thus f2

n n→∞ Id. Since (f2
n) ⊂ G and G is discrete we deduce f2

n = Id

for n large, which is a contradiction.

Claim 3. log
(〈

G ∪
√

[G,G]
〉)

is an additive discrete subgroup of hC. For this, let 
a, b, c, x, y, z ∈ C be such that:

γ1 =
(0 a b− 2−1ac

0 0 c
0 0 0

)
, γ2 =

(0 x y − 2−1xz
0 0 z
0 0 0

)
∈ log

(〈
G ∪
√

[G,G]
〉)

.

An easy calculation shows:

exp(γ1 − γ2) = exp(γ1)exp(γ2)−1

[1 0 2−1(az − cx)
0 1 0
0 0 1

]
,

and

(1 0 2−1(az − cx)
0 1 0
0 0 1

)2

= [exp(γ1), exp(γ2)] .

Hence exp(γ1 − γ2) ∈
〈
G ∪
√

[G,G]
〉
. Since exp is a diffeomorphism with inverse log, 

Claim 2 implies that log
(〈

G ∪
√

[G,G]
〉)

is an additive discrete group.
To finish the proof of Part (2) we notice that V is a subgroup of the additive discrete 

group log
(〈

G ∪
√

[G,G]
〉)

⊂ hC and dimR(hC) = 6.
Now we prove Part (3). Let us assume that G is complex Kleinian. By Lemma 5.7, G

leaves invariant each connected component of Ω(G), and each of these is contractible 
by Lemma 5.4. Hence, by Theorem 1.17, the obstruction dimension of G satisfies 
obdim(G) ≤ 4. On the other hand each Bj is a finitely generated, torsion free group, and 
it is well known that this kind of groups are semi-hyperbolic, see [1]. Therefore Corol-
lary 1.18 yields 

∑n
i=0 obdim(Bi) ≤ obdim(G) ≤ 4. Finally notice that Bj = Zkj for some 

kj and obdim(Bj) = kj = rank(Bj) by [11, 2.2]. �
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Corollary 5.9. If G ⊂ Heis(3, C) is a discrete group, then G is polycyclic.

Recall that polycyclic means that the group is solvable and every subgroup is finitely 
generated. Polycyclic groups actually are finitely presented [23].

5.2. Triangular purely parabolic groups with trivial kernel

In this subsection we study purely parabolic groups with an invariant full flag and 
finite kernel. Now recall from Section 4.2 that U+ is the subgroup of PSL(3, C) of classes 
of upper triangular matrices (gij) with g11g22g33 = 1, and we defined a group morphism 
Π∗ : U+ → Mob(C) by

Π∗([gij ])z = g11g
−1
22 z + g12g

−1
22 .

Lemma 5.10. Let G ⊂ Heis(3, C) be a commutative discrete group. If Ker(Π∗|G) and 
Ker(Π|G) are trivial, then there exist W ⊂ C an additive subgroup and L : W → C a 
group morphism such that:

(1) The group G is conjugate to:

K0(W,L) =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1 ξ L(ξ) + 2−1ξ2

0 1 ξ

0 0 1

⎤⎥⎦ : ξ ∈ W

⎫⎪⎬⎪⎭ .

(2) The Kulkarni limit set is:

ΛKul(K0(W,L)) = ←−→e1, e2 = P 2
C −Eq(L),

and its complement ΛKul(K0(W, L)) is the largest open set on which the group acts 
properly discontinuously.

(3) The group K0(W, L) is free with rank at most four.
(4) If W is discrete then L admits a linear extension to the real vector space SpanR(W ).

Proof. Let us show Part (1). Consider the following auxiliary function

ζ : G → C2

g �→ (π12(g), π23(g)) .

By definition ζ is a monomorphism. Set

κ : ζ(G) → C

x �→ π13(ζ−1(x)).

It is clear that we have:
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G =
{[1 π1(x) κ(x)

0 1 π2(x)
0 0 1

]
: x ∈ W

}
.

Now let x, y ∈ ζ(G), then A = B where A, B are:

A =
[1 π1(x) κ(x)

0 1 π2(x)
0 0 1

][1 π1(y) κ(y)
0 1 π2(y)
0 0 1

]

=
[1 π1(x + y) κ(x) + π1(x)π2(y) + κ(y)

0 1 π2(x + y)
0 0 1

]

B =
[1 π1(y) κ(y)

0 1 π2(y)
0 0 1

][1 π1(x) κ(x)
0 1 π2(x)
0 0 1

]

=
[1 π1(x + y) κ(x) + π1(y)π2(x) + κ(y)

0 1 π2(x + y)
0 0 1

]

Then for every x, y ∈ ζ(G) we have:

κ(x + y) = κ(x) + κ(y) + π1(x)π2(y) ,

π1(x)π2(y) = π1(y)π2(x) .

By Lemma 7.3 there exists an additive subgroup W ⊂ C and μ ∈ C∗ such that ζ(G) =
W (1, μ). Let us define

h =

⎡⎣1 0 0
0 μ−1/2 0
0 0 μ1/2

⎤⎦ ,

and observe that:

hGh−1 =
{[1 ξ κ̃(ξ)

0 1 ξ
0 0 1

]
: ξ ∈ W

}
,

where κ̃ : W → C satisfies κ̃(ξ1+ξ2) = κ̃(ξ1) +κ̃(ξ2) +ξ1ξ2. To conclude define L : W → C

by L(ξ) = κ̃(ξ) − 2−1ξ2, then:

L(ξ1 + ξ2) = κ̃(ξ1 + ξ2)− 2−1(ξ1 + ξ2)2 = κ̃(ξ1)+ κ̃(ξ2)− 2−1ξ2
1 − 2−1ξ2

2 = L(ξ1)+L(ξ2),

proving Part (1).
Let us prove Part (2). Let (gm) ⊂ G be a sequence of distinct elements of G, then 

there exists (xn) ⊂ W a sequence of distinct elements such that



474 W. Barrera et al. / Linear Algebra and its Applications 653 (2022) 430–500
gm =

⎡⎣k−1
m xmk−1

m k−1
m (L(xm) + x2/2)

0 k−1
m xmk−1

m

0 0 k−1
m

⎤⎦ ,

where km = max{|xm|, |L(xm) + x2
m/2|}. If (gnm

) is a subsequence of (gm) such that 
(gnm

) converges to P ∈ SP(3, C) −PSL(3, C), then there are a, b ∈ C such that | a | + |
b |
= 0 and

P =
[0 a b

0 0 a
0 0 0

]
.

This shows that Eq(G) = P 2
C −←−→e1, e2 = C2 since, by Proposition 1.6, Eq(G) ⊂ ΩKul(G)

and ΛKul(G) always contains a line. Then Eq(G) = ΩKul(G). If Ω ⊂ P 2
C is any open set 

on which G acts properly discontinuously, then P 2
C − Ω contains a complex line, say �. 

If g ∈ G − {Id}, then gm�
m→∞

←−→e1, e2.
In order to prove Part (3) we observe that G is an group acting properly discontin-

uously and freely on C2, thus the rank of G must be at most four, see the proof of 
Proposition 5.9 in [4]. The last part of the theorem is immediate. �

As a consequence of Lemma 5.10 in [3] we get the following result.

Lemma 5.11. Let G ⊂ Heis(3, C) be a commutative discrete group, then:

(1) If Ker(Π∗|G) is non-trivial, then there is a discrete additive subgroup L of C2 with 
rank at most four, such that:

G =
{[1 0 y

0 1 z
0 0 1

]
: (y, z) ∈ L

}
.

(2) If Ker(Π|G) is non-trivial, then there exists a discrete additive subgroup L ⊂ C2

such that:

G =
{[1 x y

0 1 0
0 0 1

]
: x ∈ L

}
.

Moreover, if G is complex Kleinian, then L has rank at most 2.

5.3. Groups with infinite Kernel

We consider now discrete groups G ⊂ Heis (3, C) whose control map has infinite 
kernel, i.e., Ker(Π|G) is infinite.

Lemma 5.12. If G is complex Kleinian group with infinite kernel, then:



W. Barrera et al. / Linear Algebra and its Applications 653 (2022) 430–500 475
(1) We have that Ker(Π|G) = Zk where 1 ≤ k ≤ 2.
(2) We have that ΛKul(Ker(Π|G)) = L0(Ker(Π|G)) is either a line or a pencil of lines 

over a circle, where L0 is as in Definition 1.5.
(3) If the set ΛKul(Ker(Π|G)) is a line, then there exists a discrete additive subgroup 

W of C such that G is conjugate to:

GW =
{[1 0 w

0 1 0
0 0 1

]
: w ∈ W

}

and rank(Ker(Π|G)) ≤ 2.
(4) If ΛKul(Ker(Π|G)) is a pencil of lines over a circle, then the rank of Ker(Π|G) is 

two and the groups Π∗(Ker(Π|G)) and π23(Ker(Π|G)) are non-trivial.
(5) If the group Π(G) is non-trivial. Then the group Π∗(Ker(Π|G)) is non-trivial if and 

only if ΛKul(Ker(Π|G)) is a pencil of lines over a circle.

Proof. The proofs of parts (1) and (2) follow from Example 2.3. Let us prove Part (3). 
It is clear that there exists L ⊂ C2 an R-linearly independent set such that G = T ∗(L), 
where G = T ∗(L) is given as in Example 2.3. We know that

ΛKul(Ker(Π|G)) =
⋃
p∈S

←−→e1, p ,

where S is the closure of the set 
{
SpanZ{(y, −x) : (x, y) ∈ L} \ {0}

}
. Since 

ΛKul(Ker(Π|G)) is a single line, from Lemma 2.3 we deduce that S is either a sin-
gle point or it contains exactly two C-linearly dependent vectors. Let us assume that 
S contains exactly two C-linearly dependent vectors, the other case is similar; so there 
exists α ∈ C and (x, y) ∈ L, such that one has:

G =
{[1 (n + mα)x (n + mα)y

0 1 0
0 0 1

]
: n,m ∈ Z

}
.

Let r ∈ R∗ be such that x 
= yr, then a simple computation shows:

[1 0 0
0 r 1
0 x y

][1 (n + mα)x (n + mα)y
0 1 0
0 0 1

][1 0 0
0 r 1
0 x y

]−1

=
[1 0 m + nα

0 1 0
0 0 1

]
,

proving (3). Notice that Part (4) follows from Example 2.3, so let us prove (5).
Since Π∗(Ker(Π|G)) and Π(G) are both non-trivial, we deduce that there are 

a, b, x, y, z ∈ C and g, h ∈ G such that az 
= 0 and

g =
[1 a b

0 1 0
]

; h =
[1 x y

0 1 z

]
.

0 0 1 0 0 1
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By a straightforward computation we find:

hgh−1 =
[1 a b− az

0 1 0
0 0 1

]
.

In order to conclude the proof we only need to observe that (a, b) and (a, b − az) are 
C-linearly independent vectors. �

As in [3], we use the notation μ(U) to denote the maximum number of complex 
projective lines in general position contained in P 2

C − U .

Lemma 5.13. Let G ⊂ Heis(3, C) be complex Kleinian group such that Π(G) is non trivial 
and μ(ΩKul(Ker(Π|G))) = 2, then

(1) The group Π(G) is discrete.
(2) The rank of Π(G) is equal to one.

Proof. Assume Π(G) is not discrete. Then we can assume there exists a sequence (gn) ⊂
G such that Π(gn) is a sequence of distinct elements converging to Id. On the other 
hand, since ΛKul(Ker(Π|G)) is a pencil of lines over a circle, there exists g ∈ Ker(Π|G)
such that Π∗(g) 
= Id. If gn and g are given respectively by

gn =
[1 an bn

0 1 cn
0 0 1

]
; g =

[1 x y
0 1 0
0 0 1

]
,

then

gngg
−1
n =

[1 x y − xcn
0 1 0
0 0 1

]
n→∞

[1 x y
0 1 0
0 0 1

]
,

which contradicts that G is discrete.
Now we assume that Π(G) has rank ≥ 2. Let h1, h2, h ∈ G be such that 

〈Π(h1), Π(h2)〉 = Π(G), h ∈ Ker(Π|G) and Π∗(h) 
= Id. Set:

h1 =
[1 a b

0 1 c
0 0 1

]
; h2 =

[1 x y
0 1 z
0 0 1

]
; h =

[1 u v
0 1 0
0 0 1

]
,

then

[h−1, h1] =
[1 0 −uc

0 1 0
]

; [h−1, h2] =
[1 0 −uz

0 1 0
]
.

0 0 1 0 0 1
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Then {(u, v), (0, −uc), (0, −uz)} is an R-linearly independent set, which is not possi-
ble. �
Proposition 5.14. If G ⊂ Heis(3, C) is complex Kleinian such that Π(G) is non trivial 
and μ(ΩKul(KerΠ|G)) = 2. Then there exist x, y ∈ C, p, q, r ∈ Z such that p, q are 
co-primes, q2 divides r and G is conjugate to

H =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1 k + lpq−1 + mx lr−1 + m (k + lpq−1) +

(
m
2
)
x + my

0 1 m
0 0 1

⎤⎥⎦ : (k, l,m) ∈ Z

⎫⎪⎬⎪⎭ .

Proof. By Lemma 5.13 we know that Π(G) is discrete and has rank equal to 1; and by 
Lemma 5.12 we have rank(Ker(Π|G)) = 2 and Π∗(Ker(Π|G)) is non-trivial. Thus by 
Theorem 0.3 there exist {(a, b), (c, d)} a C-linearly independent set and u, v, w ∈ C such 
that

G =

⎧⎨⎩
[1 ka + lc kb + ld

0 1 0
0 0 1

][1 u v
0 1 w
0 0 1

]n
: k, l, n ∈ Z

⎫⎬⎭ , (5.2)

aw 
= 0. A simple computation shows:⎡⎣ 1
a 0 0
0 1 b

a
0 0 w

⎤⎦[1 a b
0 1 0
0 0 1

]⎡⎣ 1
a 0 0
0 1 b

a
0 0 w

⎤⎦−1

=
[1 1 0

0 1 0
0 0 1

]
= g1 ,

⎡⎣ 1
a 0 0
0 1 b

a
0 0 w

⎤⎦[1 c d
0 1 0
0 0 1

]⎡⎣ 1
a 0 0
0 1 b

a
0 0 w

⎤⎦−1

=

⎡⎣1 c
a

d
aw − bc

a2w
0 1 0
0 0 1

⎤⎦ = g2 ,

⎡⎣ 1
a 0 0
0 1 b

a
0 0 w

⎤⎦[1 u v
0 1 w
0 0 1

]⎡⎣ 1
a 0 0
0 1 b

a
0 0 w

⎤⎦−1

=

⎡⎣1 u
a

v
aw − bu

awa
0 1 1
0 0 1

⎤⎦ = g3 .

Now by Equation (5.2) we deduce that

G1 = {gk1gl2gn3 : k, l, n ∈ Z}

is a group conjugate to G. On the other hand, G1 is a group if and only if

g3gig
−1
3 ∈ 〈g1, g2〉 for i = 1, 2.

The last statement is equivalent to

(0, 1), (0, ca−1) ∈ SpanZ({(1, 0), (ca−1, (aw)−1(d− bca−1))}).

Now the conclusion follows from Lemma 7.4. �
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Proposition 5.15. Let G ⊂ Heis(3, C) be complex Kleinian such that ΛKul(Ker(Π|G)) is 
a line and Π(G) is discrete. Then G is conjugate to one of the following groups:
(1)

T (L) =

⎧⎪⎨⎪⎩
⎡⎢⎣ 1 0 y

0 1 z

0 0 1

⎤⎥⎦ : (y, z) ∈ L

⎫⎪⎬⎪⎭ , (5.3)

where L ⊂ C2 is an additive subgroup such that π2(L) is discrete.
(2)

K0(W1,W2, L) =
{[1 x L(x) + x2/2 + w

0 1 x
0 0 1

]
: w ∈ W2, x ∈ W1

}
, (5.4)

where W1, W2 ⊂ C are additive discrete subgroups and L : W1 → C is a group 
morphism.

(3)

K =

⎧⎨⎩
[1 0 w

0 1 0
0 0 1

][1 1 x
0 1 1
0 0 1

]n [1 a b
0 1 c
0 0 1

]m
: m,n ∈ Z, w ∈ W

⎫⎬⎭ , (5.5)

where W ⊂ C is an additive discrete subgroup, a − c ∈ W and c /∈ R.

Proof. Since Π(G) is discrete we deduce Ker(Π|G) and Π(G) are torsion free Abelian 
groups with rank less than or equal to 2. For simplicity we may assume that 
rank(Ker(Π|G)) = rank(Π(G)) = 2 since, as we will see in the proof, any other possi-
bility will be covered by this case. Now by Theorem 0.3 there exist W ⊂ C an additive 
discrete subgroup with rank 2 and a, b, c, x, y, z ∈ C such that:

G =

⎧⎨⎩
[1 0 w

0 1 0
0 0 1

][1 x y
0 1 z
0 0 1

]m [1 a b
0 1 c
0 0 1

]n
: w ∈ W,m, n ∈ Z

⎫⎬⎭ , (5.6)

and zc−1 /∈ R. Now consider the following cases:

Case 1. xb − za = 0. Let us consider the following sub-cases:

Sub-case 1. x = a = 0. Then from Equation (5.6) we see that G is conjugate to the torus 
group given by Equation (5.3).

Sub-case 2. xa 
= 0. Observe that:

gw =

⎡⎣ 1
x 0 0
0 1 0
0 0 z

⎤⎦[1 0 w
0 1 0
0 0 1

]⎡⎣ 1
x 0 0
0 1 0
0 0 z

⎤⎦−1

=
[1 0 w(xz)−1

0 1 0
0 0 1

]
,
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g =

⎡⎣ 1
x 0 0
0 1 0
0 0 z

⎤⎦[1 x y
0 1 z
0 0 1

]⎡⎣ 1
x 0 0
0 1 0
0 0 z

⎤⎦−1

=
[1 1 y

xz
0 1 1
0 0 1

]
,

h =

⎡⎣ 1
x 0 0
0 1 0
0 0 z

⎤⎦[1 a b
0 1 c
0 0 1

]⎡⎣ 1
x 0 0
0 1 0
0 0 z

⎤⎦−1

=

⎡⎣1 a
x

b
xz

0 1 a
x

0 0 1

⎤⎦ .
By Lemma 5.10 there exists a group morphism L : W1 = SpanZ({1, ax−1}) → C such 
that:

〈h, g〉 =
{[1 r L(r) + 2−1r2

0 1 r
0 0 1

]
: r ∈ W1

}
.

Now by Equation (5.6) we have that G is conjugate to an Abelian Kodaira group as in 
Equation (5.4).

From Lemma 5.12 it is clear that the previous cases cover all the possibilities for the 
case xb − za = 0.

Case 2. xb − za 
= 0.

Sub-case 1. x = 0, a 
= 0. The following equations:

gw =

⎡⎣ 1
a 0 0
0 1 0
0 0 z

⎤⎦[1 0 w
0 1 0
0 0 1

]⎡⎣ 1
a 0 0
0 1 0
0 0 z

⎤⎦−1

=
[1 0 w(az)−1

0 1 0
0 0 1

]
,

g =

⎡⎣ 1
a 0 0
0 1 0
0 0 z

⎤⎦[1 0 y
0 1 z
0 0 1

]⎡⎣ 1
a 0 0
0 1 0
0 0 z

⎤⎦−1

=
[1 0 y

az
0 1 1
0 0 1

]
,

h =

⎡⎣ 1
a 0 0
0 1 0
0 0 z

⎤⎦[1 a b
0 1 c
0 0 1

]⎡⎣ 1
a 0 0
0 1 0
0 0 z

⎤⎦−1

=

⎡⎣1 1 b
az

0 1 c
z

0 0 1

⎤⎦ ,
together with Equation (5.6), imply that G is conjugate to a group of the form given by 
Equation (5.5).

Sub-case 2. x 
= 0 and a 
= 0. Then analogous arguments show that G is conjugate to a 
group of the form given by Equation (5.5). �

In a similar way one can show the following proposition:

Proposition 5.16. Let G ⊂ Heis(3, C) be a commutative complex Kleinian group such that 
Ker(Π|G) is infinite and Π(G) is non-discrete, then:
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(1) If Π∗(G) is trivial, then there exists L ⊂ C2 an additive discrete subgroup of rank at 
most four, such that π2(L) is non-discrete and G is conjugate to:

T (L) =
{[1 0 a

0 1 b
0 0 1

]
: (a, b) ∈ L

}
.

(2) If Π∗(G) is non trivial, then there exist additive subgroups W1, W2 ⊂ C such that 
W1 is non-discrete, W2 has rank 1 and G is conjugate to:

K0(W1,W2, L) =
{[1 x L(x) + x2/2 + w

0 1 x
0 0 1

]
: w ∈ SpanZ(W2), x ∈ SpanZ(W1)

}

where L : W1 → C is a group morphism.

Lemma 5.17. Let a, b, c ∈ C and r ∈ R −Q, and let G ⊂ Heis(3, C) be the group given 
by

G =
〈
A =

[1 1 0
0 1 1
0 0 1

]
, B =

[1 a + r b
0 1 r
0 0 1

]〉
.

Then

(1) G is commutative if and only if a = 0.
(2) If a 
= 0, then P 2

C − Ω(G) is a cone of lines over a circle.

Proof. The proof of Part (1) is straightforward. To prove Part (2) notice that Theo-
rem 0.3 implies:

G =
{
gmnk =

[
1 (m+nr)+na ak+

(m
2
)
+mnr+

(n
2
)
r(r+a)

0 1 m+nr
0 0 1

]
: k,m, n ∈ Z

}

By elementary algebra we have:

a(2k + n2r) + rn(−a− r + 1) + (m + nr)2 − (m + nr)
2

= ak +
(
m
2

)
+ mnr +

(
n
2

)
r(r + a). (5.7)

Claim 1. P 2
C − Ω(G) contains more than one line. To prove this claim it is enough to 

show that P 2
C−Ω(G) contains a line different from ←−→e1, e2. Let (an), (bn) ∈ Z be sequences 

such that an + bnrn→∞ 0 ; let us assume that all the elements in the sequence (an)
are either odd or even. Let k0 ∈ N be an even number such that
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k0|a| > |r(−a− r + 1)|,

and define the following sequence:

cn =
{

2−1bn(an + k0 + 1) if an is odd ,
2−1bn(an + k0) if an is even .

Clearly (cn) ⊂ Z and

gan,bn,cn n→∞ g =
[0 2a w0 + r(−a− r + 1)

0 0 0
0 0 0

]
,

where w0 is either k0 or k0 + 1. Hence Ker(g) is a complex line distinct from ←−→e1, e2.

Claim 2. P 2
C − Ω(G) is contained in a pencil of lines over an Euclidean circle. Let 

(an), (bn), (cn) ∈ Z be sequences such that an + bnrn→∞ 0 . Assume that

gan,bn,cnn→∞ g =
[0 x y

0 0 0
0 0 0

]
.

If x 
= 0 we get:

x = limn→∞ 2(an + bnr + bna)b−1
n = 2a,

y = limn→∞(a(2cn + b2nr) + rbn(−a− r + 1) + (an + bnr)2 − (an + bnr))b−1
n

= r(−a− r + 1) + a limn→∞(2cnb−1
n + bnr).

Thus y = sa + 1 − r for some s ∈ R. Therefore:

P 2
C − Ω(G) ⊂ ←−→e1, e2 ∪

⋃
s∈R

←−−−−−−−−−−−−−−−−→
e1, [0 : sa + 1 − r : −2a] .

Finally, since Π(G) is conjugate to a dense subgroup of R and P 2
C − Ω(G) has more 

than two lines we deduce P 2
C−Ω(G) contains a pencil of lines over an Euclidean circle. �

Lemma 5.18. Let G ⊂ Heis(3, C) be a non-Abelian Kleinian group such that Ker(Π|G)
is infinite and Π(G) is non-discrete, then:

(1) The set ΛKul(Ker(Π|G)) is a complex line;
(2) The set P 2

C − Ω(G) contains more than one line;
(3) The group Π(G) is conjugate to a subgroup of R;
(4) The rank of the group Π(G) is equal to two.
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Proof. Part (1) follows from Lemma 5.13. Let us prove (2). Since G is non-commutative, 
there are x, y, z, a, b, c ∈ C such that {z, c} is R-linearly dependent but it is a Z-linearly 
independent set and also: xc − az 
= 0 and

g =
[1 x y

0 1 z
0 0 1

]
, h =

[1 a b
0 1 c
0 0 1

]
∈ G .

Since [g, h] 
= Id we can assume x 
= 0. A simple computation shows:

g1 =

⎡⎣ 1
x 0 0
0 1 y

x
0 0 z

⎤⎦[1 x y
0 1 z
0 0 1

]⎡⎣ 1
x 0 0
0 1 y

x
0 0 z

⎤⎦−1

=
[1 1 0

0 1 1
0 0 1

]
,

h1 =

⎡⎣ 1
x 0 0
0 1 y

x
0 0 z

⎤⎦[1 a b
0 1 c
0 0 1

]⎡⎣ 1
x 0 0
0 1 y

x
0 0 z

⎤⎦−1

=

⎡⎣1 a
x

b
xz − ay

x2z
0 1 c

z
0 0 1

⎤⎦ .

Then Part (2) follows by applying Lemma 5.17 to the group 〈g1, h1〉.
The proof of (3) is immediate from Lemma 5.7, so let us prove Part (4). Assume that 

G has a non-commutative subgroup H of type K4 such that Π(H) is non-discrete and 
has rank 3. Since H is not commutative, by Theorem 0.3, the previous parts of this 
lemma and after conjugation, if necessary, we can find an additive discrete subgroup 
W ⊂ C, a, b, c, r, s, t ∈ C such that a 
= 0, {1, t, c} is R-linearly dependent but Z-linearly 
independent and:

H =

⎧⎨⎩
[

1 0 w
0 1 0
0 0 1

] [
1 1 0
0 1 1
0 0 1

]n [1 a + c b
0 1 c
0 0 1

]m [1 r + t s
0 1 t
0 0 1

]k
: k,m, n ∈ Z, w ∈ W

⎫⎬⎭ .

Since H is a group, this means a, r, rc −at ∈ W . By Kronecker Theorem [32, Theorem 4.1], 
W is non-discrete, which is a contradiction. �

The proof of the following proposition is left to the reader.

Proposition 5.19. Let G ⊂ Heis(3, C) be a non-Abelian complex Kleinian group such 
that Ker(Π|G) is infinite and Π(G) is non-discrete. Then there are a rank one additive 
discrete subgroup W ⊂ C, a ∈ W , and b, c ∈ C, such that {1, c} is R-linearly dependent 
but Z-linearly independent and up to conjugation we have:

G =

⎧⎨⎩
[1 0 w

0 1 0
0 0 1

][1 1 0
0 1 1
0 0 1

]n [1 a + c b
0 1 c
0 0 1

]m
: m,n ∈ Z, w ∈ W

⎫⎬⎭ .

Now we prove
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Theorem 5.20. Let G be a purely parabolic discrete group in PSL(3, C). Then G is vir-
tually finitely presented, torsion free and solvable. Also, G is virtually either unipotent 
and conjugate to the projectivization of a subgroup of Heis(3, C), or else it is an Abelian 
group of rank at most two, with an irrational ellipto-parabolic element, and it is of the 
form:

Ell(W,μ) =

⎧⎪⎨⎪⎩
⎡⎢⎣ μ(w) μ(w)w 0

0 μ(w) 0
0 0 μ(w)−2

⎤⎥⎦ : w ∈ W

⎫⎪⎬⎪⎭ ,

where W is a discrete additive subgroup of C and μ : W → S1 is a group morphism.

Proof. Let G be a discrete group in PSL(3, C) with no loxodromic elements. By Theo-
rem 4.3 we have that G contains a finite index subgroup which is conjugate to a group G0
which is the projectivization of an upper triangular group of matrices. Then Lemma 4.10
grants the existence of a finite index, torsion free subgroup G1 of G0, for which the follow-
ing groups are all torsion free: Π(G1), Π∗(G1), λ12(G1), λ13(G1) and λ23(G1). Now use 
Theorems 4.3 and 4.5 applied to G1 and deduce that either G1 is a unipotent subgroup 
of Heis (3, C) or else it is Abelian of rank at most 2 of the form stated in Theorem 5.20. 
Now, if G2 is a discrete subgroup of Heis (3, C) then by Corollary 5.9 we have that G2
is solvable and finitely presented. �

Finally we have:

Proof of Theorem 3.1. Let G1 be a subgroup of G which is triangularizable. Let G0 ⊂ G1
be a subgroup of finite index, such that G0, λ12(G0), λ23(G0), Π(G0), Ker(Π|G0) are 
torsion free, see Lemma 4.10. If G0 contains a parabolic element g satisfying

max{o(λ12(g)), o(λ23(g))} = ∞,

then the result follows from Theorem 4.5. Thus we can assume that G ⊂ Heis (3, C). If 
Ker(Π|G0) is trivial we deduce that G0 is commutative. The proof in this case follows 
from Theorem 4.16 and Lemmas 4.17, 5.10. If Ker(Π|G0) is non-trivial the result follows 
from Lemma 5.12 and Propositions 5.14, 5.15, 5.16 and 5.19. �
5.4. Discrete groups of Heis (3, C) which are not complex Kleinian

Proposition 5.21. Let G ⊂ Heis(3, C), then G is a discrete non-commutative group such 
that Π(G) is discrete and non-trivial if and only if G is conjugate to either

K =

⎧⎨⎩
[1 u v

0 1 0
0 0 1

][1 1 x
0 1 1
0 0 1

]n [1 a + c b
0 1 c
0 0 1

]m
: m,n ∈ Z, (u, v) ∈ L

⎫⎬⎭ ,
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or

Wx,a,b =

⎧⎨⎩
[1 u v

0 1 0
0 0 1

][1 1 x
0 1 1
0 0 1

]n
: n ∈ Z, (u, v) ∈ W

⎫⎬⎭ ,

where a, b, c, x ∈ C, c /∈ R and L ⊂ C2 is an additive discrete subgroup satisfying that 
SpanZ{(0, a), (0, π1(L)), (0, cπ1(L))} ⊂ L and rank(L) ≥ 3.

Proof. Let us assume that G is a discrete non-commutative group such that Π(G) is 
discrete and non-trivial. Without loss of generality let us assume that Π(G) has rank 
two. Then by Theorem 0.3 there are a, b, c, x ∈ C, c /∈ R and L ⊂ C2 is an additive 
discrete subgroup such that G is conjugate to the group:⎧⎨⎩

[1 u v
0 1 0
0 0 1

][1 1 x
0 1 1
0 0 1

]n [1 a + c b
0 1 c
0 0 1

]m
: m,n ∈ Z, (u, v) ∈ L

⎫⎬⎭ .

It is clear that G acts properly discontinuously on Ω(Ker(Π|G)). Since G is not complex 
Kleinian we deduce rank(L) ≥ 3. For w = (u, v) ∈ L and k, l, m ∈ Z, define:

g(w, k, l,m) =
[1 u v

0 1 0
0 0 1

][1 1 x
0 1 1
0 0 1

]k [1 a + c b
0 1 c
0 0 1

]l
.

Let wi = (ui, vi) ∈ L (i = 1, 2) and k, l, m, n ∈ Z; a straightforward computation shows:

g(w1, k, l, )g(w2,m, n)−1 = g(w1 − w2 + w, k −m, l − n)

where w = u2(cl − cn + k −m) −ma(l − n). Thus

SpanZ{(0, a), (0, π1(L)), (0, cπ1(L))} ⊂ L. �
The proof of the following lemma is a slight modification of the proof of Part (2) in 

Lemma 5.13, so we omit it.

Lemma 5.22. Let G ⊂ Heis(3, C) be a discrete non-commutative group such that Π(G) is 
non-discrete. Then ΛKul(Ker(Π|G)) is a single complex projective line.

The next result is a direct consequence of Proposition 5.19 and we include it without 
proof:

Proposition 5.23. Let G ⊂ Heis(3, C) be a non-Abelian discrete but not Kleinian group 
such that Ker(Π|G) is infinite and Π(G) is a rank two non-discrete group. Then we can 
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find a rank two additive discrete subgroup W ⊂ C, a ∈ W , b, c ∈ C such that {1, c} is 
R-linearly dependent but Z-linearly independent and up to conjugation we have:

G =

⎧⎨⎩
[1 0 w

0 1 0
0 0 1

][1 1 0
0 1 1
0 0 1

]n [1 a + c b
0 1 c
0 0 1

]m
: m,n ∈ Z, w ∈ W

⎫⎬⎭ .

Lemma 5.24. Let G ⊂ Heis(3, C) be a discrete non-commutative group such that Π(G)
has rank at least 3, then:

(1) For every 1-dimensional real subspace � ⊂ C we have rank(� ∩ Π(G)) ≤ 2.
(2) We have rank(Ker(Π|G)) = 2 and 3 ≤ rank(Π(G)) ≤ 4.

Proof. Let us prove Part (1). Assume there is a real line � ⊂ C for which rank(� ∩Π(G)) ≥
3. Then there are x ∈ C∗ and r, s ∈ R∗ such that SpanZ{1, r, s} is a rank three group 
and SpanZ{x, rx, sx} ⊂ Π(G). Let d, e, f, g, h, j ∈ C be such that:

g1 =
[1 d e

0 1 x
0 0 1

]
, g2 =

[1 f g
0 1 rx
0 0 1

]
, g3 =

[1 u v
0 1 sx
0 0 1

]
∈ G .

A straightforward computation shows that for every k, l, m, n, o, p ∈ Z:

gk1g
l
2g

m−p
3 g−o

2 g−n
1 gp−m

3 go−l
2 gn−k

1 =
[1 0 w

0 1 0
0 0 1

]
,

where w = x(dn((l − o)r + s(m − p)) − u(m − p)(or + n) + f(os(m − p) + n(−l + o))). 
Thus

h1 =
(1 0 x(ds− h)

0 1 0
0 0 1

)
, h2 =

(1 0 x(dr − f)
0 1 0
0 0 1

)
,

h3 =
(1 0 x(fs− ur)

0 1 0
0 0 1

)
∈ G .

Since fs −ur = −s(dr− f) + r(ds −u), we conclude that SpanZ{ds −u, dr− f, fs −ur}
is non-discrete. Thus G is non-discrete, which is a contradiction.

Now we prove Part (2). From Lemma 7.5 and Proposition 5.25 we get that 
rank(Ker(Π|G)) = 2; on the other hand, by Theorem 0.3 we have 3 ≤ rank(Π(G)) ≤
4. �
Proposition 5.25. Let G ⊂ Heis(3, C) be a non-Abelian discrete group. Then Π(G) has 
rank 3 and is dense in C if and only if we can find a rank two additive discrete subgroup 
W ⊂ C, and x, a, b, c, d, e, f ∈ C such that G is conjugate to:
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H =

⎧⎨⎩
[
1 0 w
0 1 0
0 0 1

] [
1 1 x
0 1 1
0 0 1

]k [1 a + c b
0 1 c
0 0 1

]l [1 d + f e
0 1 f
0 0 1

]m
: k,m, n ∈ Z, w ∈ W

⎫⎬⎭ ,

where a, b, c, d, e, f are subject to the conditions:

(1) {a, d, af − dc} ⊂ W ;
(2) |a| + |d| 
= 0 ;
(3) for every real line � ⊂ C we have � ∩ SpanZ{1, c, f} has rank at most two.

Proof. For w ∈ W and k, l, m ∈ Z, define:

g(w, k, l,m) =
[1 0 w

0 1 0
0 0 1

][1 1 x
0 1 1
0 0 1

]k [1 a + c b
0 1 c
0 0 1

]l [1 d + f e
0 1 d
0 0 1

]m
.

Let u, v ∈ W and k, l, m, o, p, q ∈ Z; a straightforward computation shows:

g(u, k, l,m)g(v, o, p, q)−1 = g(u− v + w, k − o, l − p,m− q) ,

where w = −aln + ao(n + f(m − p)) − d(n + co)(m − p). Thus H is a group if and only 
if a, d, af − dc ∈ W . We notice that if H is a group, then H is non commutative if and 
only if |a| + |d| 
= 0. Clearly Π(H) has rank three and it is a dense group in C whenever 
SpanZ({1, c, d}) is dense in C. Observe that if H is non-commutative and SpanZ{1, c, f}
is dense in C, then H is discrete if and only if there are sequences (wn) ⊂ W and 
(kn), (ln), (mn) ⊂ Z such that (gn = g(wn, kn, ln, mn)) is a sequence of distinct elements 
satisfying gn n→∞ Id . By Lemma 7.5, H is non-discrete if and only if W is non-discrete 

or there are sequences (wn) ⊂ W and (kn), (ln), (mn) ⊂ Z such that:

(1) (kn + lnc + mnf) is a sequence of distinct elements converging to 0 ;
(2) (lna + mnd) converges to 0 .

Now observe that Lemma 7.6 and the previous facts are equivalent to the non-discreteness 
of SpanZ(a, d). �

Similar arguments show:

Proposition 5.26. Let G ⊂ Heis(3, C) be a non-Abelian discrete group such that Π(G)
has rank four. Then there exist a rank two additive discrete subgroup W ⊂ C and 
x, a, b, c, d, e, f, g, j ∈ C such that G is conjugate to:

H =
{
gug

k
1g

l
2g

m
3 g4. : k, l,m, n ∈ Z, w ∈ W

}
,

where
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gu =
[1 0 u

0 1 0
0 0 1

]
; g1 =

[1 1 x
0 1 1
0 0 1

]
; g2 =

[1 a + c b
0 1 c
0 0 1

]
;

g3 =
[1 d + f e

0 1 f
0 0 1

]
; g4 =

[1 g + j h
0 1 j
0 0 1

]
,

and x, a, b, c, d, e, f, g, h, j are subject to the conditions:

(1) {a, d, g, dj − gf, af − cd, aj − cg} ⊂ W ;
(2) |a| + |d| + |g| 
= 0 ;
(3) for every real line � ⊂ C we have � ∩ SpanZ({1, c, f, j}) has rank at most two.

5.5. Proof of Theorem 3.2

Let G be a discrete group without loxodromic elements which is not (complex) 
Kleinian. By Corollary 4.4 and Lemma 4.10, G contains a torsion free subgroup G0
of finite index which is triangularizable, it is not Kleinian and the following groups are 
torsion free: G0, λ12(G0), λ23(G0), Π(G0), Ker(Π|G0). Theorem 4.5 implies that G0 does 
not contain an irrational ellipto-parabolic element, for otherwise the group G0 would be 
Kleinian. So we can assume that G0 ⊂ Heis (3, C).

If G0 is commutative, then Theorem 4.16 and Lemma 5.4 imply that Π(G0) is trivial, 
and the result follows from Lemma 5.11.

If G0 is non-commutative, then Π(G0) may or may not be discrete. If Π(G0) is discrete, 
then the result follows by Proposition 5.21. If Π(G0) is non-discrete, then by Lemma 5.24
we have that Π(G0) has rank 2, 3 or 4. Let us look at each of these cases:

If the group Π(G) has rank two, then the result follows from Proposition 5.23.
If the group Π(G) has rank three, then the result follows from Lemma 7.7 and Propo-

sition 5.25.
If the group Π(G) has rank four, then the result follows from Proposition 5.26 and 

Lemma 7.9. �
Proof of Theorem 0.1. This uses Theorems 3.1, 3.2, 3,2 and section 2 where the families 
of purely parabolic groups are described.

Proof of part (1). If G is a complex Kleinian group then by Theorem 3.1, G is virtually 
conjugate to either an elliptic group or to a discrete subgroup of Heis(3, C). If G is discrete 
but non-Kleinian, then by Theorem 3.2 we get that G is virtually conjugate to a discrete 
subgroup of Heis(3, C).

Proof of part (2) items (a) and (b). If G is complex Kleinian then, by Theorem 3.1, G
is virtually conjugate to one and only one of the following groups: Elliptic, Torus, dual 
torus group type I and type II, Kleinian Inoue, K0, K1 and K2. By Lemmas 2.1, 2.2, 2.3, 
2.5, 2.13, 2.16, 2.17, 2.18 and Definition 2.4 the only groups whose limit set is exactly 
one line are: Elliptic groups, Torus groups, dual Torus type I groups, K0 groups and K1
groups.
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And by Lemmas 2.3, 2.16, 2.17, 2.18, Theorem 2.7 and Definition 2.4 those groups 
whose limit set is a cone of lines over a circle are: dual torus type II groups, Kleinian 
Inoue groups, and K2 groups.

The proof of Part (2) Item (C) follows directly from Theorem 3.2 and the correspond-
ing list is the following dual torus group type III, non Kleinian Inoue groups, Extended 
Inoue groups and K3, K4 and K5 groups. �
6. Appendix: Abelian subgroups of U+

Since we have not found Theorem 4.16 in the literature, we now prove it for complete-
ness. The claim is that if U+ is the group in Definition 4.9 and G ⊂ U+ is a commutative 
subgroup, then G is conjugate to a subgroup G̃ of one of the Abelian Lie groups Cj in 
Definition 4.15, for some j = 1, 2, 3, 4, 5. Notice that since G is commutative, we have 
that Π∗(G) and Π(G) are Abelian. Now consider the following cases:

Case 1. The groups Π∗(G) and Π(G) contain a parabolic element. In this case, since
Π∗(G), Π(G) ⊂ Mob(C) are Abelian, we deduce that Π∗(G) and Π(G) are purely 
parabolic, i.e., G ⊂ Ker(λ12) ∩Ker(λ13).

Claim 1. There is an element h ∈ G such that Π(h) and Π∗(h) are parabolic. Let 
g1, g2 ∈ G be such that Π(g1) and Π(g2) are parabolic, then, taking a power of g2 if 
necessary, we can assume that Π(g1g2) and Π∗(g1g2) are not the identity. Since G ⊂
Ker(λ12) ∩Ker(λ13) we deduce that Π(g1g2) and Π∗(g1g2) are both parabolic.

Let h ∈ G be the element given by the previous claim, then

h =
[1 a b

0 1 c
0 0 1

]

where ac 
= 0. Let us define h0 ∈ PSL(3, C) by

h0 =
[
a−1 0 0
0 1 0
0 0 c

]
.

Then a straightforward computation shows that for every g = [gij ] ∈ h0Gh−1
0 we have:

[h0hh
−1
0 , g] =

[1 0 −g12 + g23
0 1 0
0 0 1

]
.

Since G is Abelian we deduce g12 = g23.

Case 2. The group Π∗(G) contains a parabolic element but Π(G) does not. Under this 
assumption, we deduce Π∗(G) is purely parabolic and there exists w ∈ C such that 
Π(G)w = w, hence G ⊂ Ker(λ12). We define
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h =
[1 0 0

0 1 w
0 0 1

]
.

By a straightforward computation we show that for every g ∈ G, there exists cg ∈ C

such that:

hgh−1 =

⎡⎣g11 g12 cg
0 g11 0
0 0 g−2

11

⎤⎦ .

We notice that G1 = hGh−1 leaves invariant the line ←−→e1, e3, so Π1 : G1 → Mob(C), given 
by Π1([gij ]) = g11g

−1
33 z + g13g

−1
33 , is a well defined group morphism. Now we only need 

to consider the following sub-cases:

Sub case 1. The group Π1(G1) contains a parabolic element. Then Π1(G1) is purely 
parabolic, which shows that G1 ⊂ Ker(λ13).

Sub case 2. The group Π1(G1) does not contain a parabolic element. Then there exists 
p ∈ C such that Π1(G1)p = p. We define

h1 =
[1 0 p

0 1 0
0 0 1

]
.

It is clear that for every g ∈ G1 we have

h1hgh
−1h−1

1 =

⎡⎣g11 g12 0
0 g11 0
0 0 g−2

11

⎤⎦ .
It follows that in this case the group is conjugate to a subgroup in C1.

Case 3. The group Π∗(G) does not contain a parabolic element but Π(G) does. We 
deduce that Π(G) is purely parabolic and there exists z ∈ C such that Π∗(G)z = z. 
Clearly G ⊂ Ker(λ23); we define

h =
[1 z 0

0 1 0
0 0 1

]
.

Then for every g ∈ G there exists cg such that:

hgh−1 =

⎡⎣g−2
11 0 cg
0 g11 g13
0 0 g11

⎤⎦ .
Now we can consider Π2 = Πe2,

←−→e1,e3 and we have that Π2(G) ⊂ Mob(C) is an Abelian 
group. So we must consider the following sub cases:



490 W. Barrera et al. / Linear Algebra and its Applications 653 (2022) 430–500
Sub-case 1. The group Π2(G) contains a parabolic element. We get that Π2(G) is purely 
parabolic, which shows that G ⊂ Ker(λ13).

Sub-case 2. The group Π2(G) does not contain a parabolic element. Again there exists 
p ∈ C such that Π2(G)p = p. Define

h1 =
[1 0 p

0 1 0
0 0 1

]
.

One can show that for every g ∈ G:

h1hgh
−1h−1

1 =

⎡⎣g−2
11 0 0
0 g11 g13
0 0 g11

⎤⎦ .

Case 4. The groups Π∗(G) and Π(G) do not contain parabolic elements. In this setting 
there are z, w ∈ C such that Π∗(G)z = z and Π(G)w = w. Define

h =
[1 z 0

0 1 w
0 0 1

]
.

Then for every g = [gij ] ∈ G there exists cg ∈ C such that:

hgh−1 =
[
g11 0 cg
0 g22 0
0 0 g33

]
.

Consider the following sub-cases:

Sub case 1. The group Π2(G) contains a parabolic element. Then Π2(G) is purely 
parabolic, which shows that G ⊂ Ker(λ13).

Sub case 2. The group Π2(G) does not contain a parabolic element. We know there exists 
p ∈ C such that Π2(G)p = p, let

h1 =
[1 0 p

0 1 0
0 0 1

]
.

Then the subgroup h1hGh−1h−1
1 contains only diagonal elements. �

7. Appendix: Technical lemmas on additive subgroups of C2

Now we state and prove some technical lemmas used along this work.
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Lemma 7.1. Let ϑ ∈ S1 \ {±1}, then

β1 = {(0, 1), (ϑ, ϑ), (2ϑ2, ϑ2), (3ϑ3, ϑ3)} ⊂ C2 ,

is an R-linearly independent set.

Proof. If ϑ = cos(θ) +i sin(θ), then β1 is R-linearly independent because the determinant∣∣∣∣∣∣∣
0 0 1 0

cos(θ) sin(θ) cos(θ) sin(θ)
2 cos(2θ) 2 sin(2θ) cos(2θ) sin(2θ)
3 cos(3θ) 3 sin(3θ) cos(3θ) sin(3θ)

∣∣∣∣∣∣∣ = 4(sin θ)4

is equal to 0 if and only if ϑ = ±1. �
Lemma 7.2. Let ϑ ∈ S1 \ {±1} be a complex number satisfying:

(1) The set

β2 = {(0, 1), ϑ(1, 1), ϑ2(2, 1), ϑ3(3, 1), ϑ4(4, 1)} ⊂ C2,

is Q-linearly dependent;
(2) The number Re(ϑ) is not a root of the polynomial:

192x7 − 64x6 + 496x5 + 288x4 + 510x3 + 209x + 8.

Then there exists α ∈ C∗ such that:

(α, 0) ∈ SpanZ{ϑj(j, 1) : j ∈ {0, . . . , 5}}.

Proof. Since β2 is a Q-linearly dependent set, there are m0, m1, m2, m3, m4 ∈ Z such 
that:

m4ϑ
4(4, 1) = m3ϑ

3(3, 1) + m2ϑ
2(2, 1) + m1ϑ(1, 1) + m0(0, 1) ,

and m4 
= 0. Thus we get the following equations:

4m4ϑ
3 = 3m3ϑ

2 + 2m2ϑ + m1 ,

m4ϑ
4 = m3ϑ

3 + m2ϑ
2 + m1ϑ + m0 .

Let us consider p1(x), p2(x) ∈ Z[x] given by:

p1(x) = −4m4x
3 + 3m3x

2 + 2m2x + m1 ,

p (x) = −m x4 + m x3 + m x2 + m x + m .
2 4 3 2 1 0
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Clearly p1(ϑ) = p2(ϑ) = 0, so there are r1, r2, r3 ∈ R such that:

p1(x) = −4m4(x− ϑ)(x− ϑ−1)(x− r1)
= −4m4x

3 + 4m4(2Re(ϑ) + r1)x2 − 4m4(1 + 2r1Re(ϑ))x + 4m4r1 ,

p2(x) = −4m4(x− ϑ)(x− ϑ−1)(x2 + r2x + r3)
= −4m4x

4 − 4m4(−2Re(ϑ) + r2)x3 − 4m4(1 − 2r2Re(ϑ) + r3)x2

−4m4(r2 − 2Re(ϑ)r3)x− 4m4r3 .

By comparing the coefficients of p1 and p2 with the previous equations we get:

m1 = 4m4r1 ,

2m2 = −4m4(1 + 2r1Re(ϑ)) ,
3m3 = 4m4(2Re(ϑ) + r1) ,
m0 = −4m4r3 ,

m1 = −4m4(r2 − 2r3Re(ϑ)) ,
m2 = −4m4(1 − 2r2Re(ϑ) + r3) ,
m3 = −4m4(r2 − 2Re(ϑ)) .

(7.1)

This yields the following linear system:

r1 + r2 − 2r3Re(ϑ) = 0 ,
2r1Re(ϑ) + 4r2Re(ϑ) − 2r3 = 1 ,
r1 + 3r3 = 4Re(ϑ) .

Solving the system by Cramer’s rule we get:

r1 = Re(ϑ)(16Re2(ϑ) − 7)
2(1 −Re2(ϑ)) ; r2 = −Re(ϑ)(8Re2(ϑ) + 3)

2(1 −Re2(ϑ)) ; r3 = 4Re2(ϑ) − 1
2(1 −Re2(ϑ)) .

(7.2)
On the other hand, from the first 3 equations in the System (7.1) we deduce that Re(ϑ) =
pq−1, where p, q ∈ Z are co-primes. Let us define:

n0 = (4Re2(ϑ) − 1)q4 ,

n1 = (−Re(ϑ) − 16Re3(ϑ)))q4 ,

n2 = (1 + 8Re2(ϑ) + 16Re4(ϑ))q4 ,

n3 = (−7Re(ϑ) − 4Re3(ϑ))q4 ,

n4 = (2 − 2Re2(ϑ))q4 ,

which are integers. From Equation (7.2) we deduce:

n4ϑ
4(4, 1) = n3ϑ

3(3, 1) + n2ϑ
2(2, 1) + n1ϑ(1, 1) + n0(0, 1) .

This implies:
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ϑ5 = n−2
4 (n0n3 + (n0n4 + n1n3)ϑ + (n1n4 + n2n3)ϑ2 + (n2n4 + n2

3)ϑ3) .

Thus:

n2
4ϑ

5(5, 1) = n0n3(0, 1) + (n0n4 + n1n3)ϑ(1, 1) + (n1n4 + n2n3)ϑ2(2, 1)
+(n2n4 + n2

3)ϑ3(3, 1) + (5n0n3 + 4(n0n4 + n1n3)ϑ + 3(n1n4 + n2n3)ϑ2

+2(n2n4 + n2
3)ϑ3)(1, 0) .

Finally let us show that

5n0n3 + 4(n0n4 + n1n3)ϑ + 3(n1n4 + n2n3)ϑ2 + 2(n2n4 + n2
3)ϑ3 
= 0 .

We define p3(x) = 5n0n3 + 4(n0n4 + n1n3)x + 3(n1n4 + n2n3)x2 + 2(n2n4 + n2
3)x3. We 

need to show p3(ϑ) 
= 0. Assume, on the contrary, that p3(ϑ) = 0.
Now we notice:

n2n4 + n2
3 = q8(2 + 63Re2(ϑ) + 72Re4(ϑ) − 16Re6(ϑ)) 
= 0.

Hence p3(x) is a cubic polynomial with coefficients in Z. Finally, since ϑ is a root of 
p3(x), there exists r0 ∈ R such that

p3(x) = 2(n2n4 + n2
3)(x− ϑ)(x− ϑ−1)(x− r0)

= 2(n2n4 + n2
3)(x3 − (r0 + 2Re(ϑ))x2 + (1 + 2r0Re(ϑ))x− r0) .

By comparing the quadratic coefficients of p3 we obtain:

−2(n2n4 + n2
3)(2Re(ϑ) + r0) = 3(n1n4 + n2n3) .

Substituting the values of the ni’s we get the following equivalent equation:

192Re(ϑ)7 − 64Re(ϑ)6 + 496Re(ϑ)5 + 288Re(ϑ)4 + 510Re(ϑ)3 + 209Re(ϑ) + 8 = 0 ,

which contradicts our initial hypothesis. �
Lemma 7.3. Let L ⊂ C2 be an additive subgroup such that for each x, y ∈ L we have 
π1(x)π2(y) = π1(y)π2(x), then:

(1) If Ker(π1) ∩L and Ker(π2) ∩L are trivial, then there is μ ∈ C∗ and W an additive 
group of C such that L = {r(1, μ) : r ∈ W}.

(2) If Ker(π1) ∩ L in non trivial, then there is an additive group W of C such that 
L = {(r, 0) : r ∈ W}.

(3) If Ker(π2) ∩ L is non-trivial, then there is an additive group W of C such that 
L = {(0, r) : r ∈ W}.
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Proof. Let us show (1). Clearly L = {(π1(x), π2(x)) : x ∈ L}. Let us define μx =
π2(x)/π1(x); by hypothesis μx does not depend on x, then

L = {(π1(x), π1(x)μx) : x ∈ L}.

In order to prove (2) it is enough to show that π2(L) is trivial. Assume on the contrary 
that there exists y ∈ L such that π2(y) 
= 0. Consider an element x ∈ Ker(π2) ∩L −{0}, 
thus 0 
= π1(x)π2(y) = π1(y)π2(x) = 0, which is a contradiction. The proof of Part (3) 
is similar. �
Lemma 7.4. Let L = {(1, 0), (c, d)} ⊂ C2 be an R-linearly independent set. Then 
(0, 1), (0, c) ∈ SpanZ(L) if and only if there are p, q, r ∈ N such that p, q are co-primes, 
q2 divides r, c = pq−1, and d = r−1.

Proof. Since (0, 1), (0, c) ∈ SpanZ(L) we deduce that there are k1, k2, k3, k4 ∈ Z such 
that

k1 + k2c = 0 ,

k2d = 1 ,

k3 + k4c = 0 ,

k4d = c .

From the first two equations we deduce d = k−1
2 , c = −k1k

−1
2 . Let p, q ∈ N be co-primes 

such that c = pq−1; substituting in the last two equations we get:

k3q + k4p = 0 ,

k4q = pk2 .

From the first equation we see that q divides k4, thus there exists m ∈ Z such that 
k4 = qm; substituting in the last equation we get:

mq2 = pk2.

It follows that q2 divides k2. Conversely, let us assume that p, q are co-primes such that 
c = pq−1 and r = q2n, then:

−p2n(1, 0) + qpn(pq−1, (q2n)−1) = (0, pq−1) ,

−pqn(1, 0) + qqn(pq−1, (q2n)−1) = (0, 1) . �
Lemma 7.5. Let a, c, d, f ∈ C be such that |a| + |d| 
= 0, SpanZ{1, c, f} is a rank three 
group and for every real subspace � ⊂ C we have that SpanZ{1, c, f} ∩� has rank at most 
two. Then Rank(SpanZ{a, d, af − dc}) ≥ 2.
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Proof. The result is trivial if a = 0 or d = 0 or ad−1 /∈ Q, so we assume that 0 
= a = rd

for some r ∈ Q. We consider the following cases:

Case 1. SpanZ{1, c, f} is dense in C. Then we must have f = s + tc where s, t ∈ R and 
{1, s, t} is Q-linearly independent. Thus, af − dc = (rs + (rt − 1)c)d; to conclude we 
observe that rs + (rt − 1)c /∈ R.

Case 2. c ∈ R −Q and f /∈ R. Then we have af − dc = (rf − c)d; to finish we observe 
that rf − c /∈ R. �
Lemma 7.6. Let a, c, d, f ∈ C be such that |a| + |d| 
= 0, SpanZ{1, c, f} is dense in C and 
there are sequences (kn), (ln), (mn) ⊂ Z such that:

(1) (kn + lnc + mnf) is a sequence of distinct elements converging to 0;
(2) (lna + mnd) converges to 0.

Then SpanZ{a, d} is non-discrete.

Proof. Assume, on the contrary, that SpanZ{a, d} is discrete. Then ad 
= 0 and qa = pd

where p, q are non-zero integers. On the other hand, since SpanZ{a, d} is discrete, by 
Assumption (2) we have lna +mnd = 0 for n large, so we can assume that lnp +mnq = 0
for n large. Hence:

kn

mn n→∞
−fp+cq

p
.

That is −fp + cq ∈ R. On the other hand, since f = r + sc where r, s ∈ R satisfies that 
{1, r, s} is Q-linearly independent, we deduce −fp + cq = −(r + sc)p + cq ∈ R. Thus 
c ∈ R, which is a contradiction. �

In the next lemma we consider a condition as in Example 2.5.3:

Lemma 7.7. Let a, c, d, f ∈ C be such that a 
= 0 and for every real line � ⊂ C we have 
that � ∩SpanZ{1, c, f} has rank at most two. Then U = SpanZ{a, d, af − dc} is discrete 
if and only if SpanZ{a, d} is discrete and one of the following statements is true:

(1) d = 0 and f /∈ R;
(2) a = rd for some r ∈ Q;
(3) ad−1 /∈ R, and there are r1, r2 ∈ Q such that

c = a(f − r1)
d

− r2 .

Proof. It is clear that if d = 0 and f /∈ R, then U is discrete. So we assume that if a = rd

with r ∈ Q, then U = dSpanZ{r, 1, rf − c}. Since f = s1 + s2c where s1, s2 ∈ R satisfy 
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that {1, s1, s2} is Q-linearly independent, then rf − c = rs1 + (s2 − 1)c ∈ R if and only 
if s2 = 1, which is not possible. Thus U is discrete. Finally observe that if ad−1 /∈ R, 
then the equation

a

d
= c + r2

f − r1

is equivalent to the discreteness of U . �
Remark 7.8. We need that the closure of every rank 3 subgroup in W = SpanZ{1, c, f}
be either dense in C or isomorphic as a Lie group to R ⊕ Z. This comes from the fact 
that W is going to play the role of a control group, and we know that control groups of 
rank 3 satisfy this. In particular, there are no control groups of rank 3 which are dense 
subgroups and isomorphic to R (cf. [27]).

Lemma 7.9. Let a, c, d, g, f, h ∈ C be such that:

(1) |a| + |d| + |g| 
= 0.
(2) W = SpanZ({1, c, f, h}) is a rank four group.
(3) For every 1-dimensional real subspace � ⊂ C we have rank(� ∩W ) ≤ 2.
(4) SpanZ{1, c, f} = αR ⊕ βZ where α, β ∈ C∗ and αβ−1 /∈ R.

Let U = SpanZ{a, d, g, dh − gf, af − cd, ah − cg}, then U is discrete if and only if 
SpanZ{a, d, g} is discrete, (|a| + |d|)(|a| + |c|)(|c| + |d|) 
= 0 and one of the following 
occurs:

(1) a = 0 (resp. d = 0, g = 0) and there are r0, r1, r2, r3 ∈ Q such that r1 
= 0 and

(r2 − r0)2 + 4r1r3 < 0;

x1 =
r2 + r0 ±

√
(r2 − r0)2 + 4r1r3

2 ;

x2 = x3

(
r2 − r0 ±

√
(r2 − r0)2 + 4r1r3
2r1

)
;

x4 = (x5 − r4)
(
r2 − r0 ±

√
(r2 − r0)2 + 4r1r3
2r1

)
− r5

where x1 = c (resp. f , h), x2 = d (resp. a, a), x3 = g (resp. g, d), x4 = f (resp. c, 
c), and x5 = h (resp. h, f).

(2) ad−1 /∈ R and there are r1, r2, s1, t1, s2, t2, s3, t3 ∈ R such that:

g = r1a + r2d ; r2t2 
= t3 ,
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f = A2 ± (c + t2)
√
A1

2 (r2t2 − t3)
; j = A3 ± (cr2 + t3)

√
A1

2 (r2t2 − t3)
,

where:

A1 =(−r2s2 + r1t2 − s3 − t1) 2 − 4 (r2s1t2 − r1s2t3 + r2s2s3 − r1t1t2 + s3t1 − s1t3) ,

A2 = − cr2s2 − cr1t2 + cs3 − ct1 + r2s2t2 − r1t
2
2 + s3t2 − 2s2t3 − t1t2 ,

A3 =r2 (cr1t2 + s3 (c + 2t2) − ct1 − s2t3) + t3 (−r1 (2c + t2) − s3 − t1) − cr22s2 .

(3) ad−1 /∈ Q and gd−1 /∈ Q and there are r2, s1, s2, s3, t1, t2, t3 ∈ Q such that r2t2 
= 0, 
a = r2d; and

c = 1
2

(
A3 ∓

√
A1

)
; j = A2 ±

√
A1 (f + t1)
2t2

,

where

A1 = 2r2s2t1 − 4r2s1t2 + r2
2t

2
1 − 2r2t1t3 − 2s2t3 + 4s3t2 + s2

2 + t23 ,

A2 = −fr2t1 − fs2 + ft3 − r2t
2
1 − s2t1 + 2s1t2 + t3t1 ,

A3 = 2fr2 + r2t1 − s2 − t3 .

Proof. Let us assume U is discrete. Clearly, SpanZ{a, d, g} is discrete; we claim:

Claim 1. |d| + |g| 
= 0: just notice that g = d = 0 implies that U = aSpanZ{1, f, h} is 
not discrete. Similarly one has that |d| + |a| 
= 0 and |a| + |g| 
= 0.

Claim 2. There are not r0, r1 ∈ Q such that a = r0d, g = r1d. Assume on the contrary 
that there are such r0, r1 ∈ Q. Set:

U = dSpanZ{r0, 1, r1, h− r1f, r0f − c, r0h− cr1}.

Let us consider

U2 = SpanZ{1, h− r1f, r0f − c, r0h− cr1}.

Observe that h − r1f /∈ R, for otherwise h − r1f ∈ Q and therefore {h, f} are Q-linearly 
dependent; since U is discrete we conclude that there are r1, r2 ∈ Q such that r0f − c =
r1 + r2(h − r1f), thus {1, c, f, h} is Q-linearly dependent, which is a contradiction.

From the previous claims we deduce adg = 0. Now let us study the case a = 0, the 
cases d = 0 or g = 0 are similar and we leave them for the reader.

Claim 3. It is not possible that adg 
= 0 and ad−1 /∈ R. Assume, on the contrary, that 
there are r1, r2, s1, s2, s3, t1, t2, t3 ∈ Q such that:

g = r1a + r2d,

dh− gf = s1a + t1d,
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af − cd = s2a + t2d,

ah− cg = s3 .

Substituting the value of g given in the first equation in the other equations we get:

a

d
= h− fr2 − t1

s1 + fr1
= t2 + c

f − s2
= cr2 + t3

h− cr1 − s3
.

Hence, we obtain the following system of polynomial equations:

(h− fr2 − t1)(f − s2) = (s1 + fr1)(t2 + c),

(h− fr2 − t1)(h− cr1 − s3) = (s1 + fr1)(cr2 + t3),

(t2 + c)(h− cr1 − s3) = (f − s2)(cr2 + t3).

A straightforward computation shows that this system has non-trivial solutions if and 
only if r2t2 
= t3, and in that case the solutions are:

f± = A2 ± (c + t2)
√
A1

2 (r2t2 − t3)
, h± = A3 ± (cr2 + t3)

√
A1

2 (r2t2 − t3)
,

where:

A1 = (−r2s2 + r1t2 − s3 − t1) 2 − 4 (r2s1t2 − r1s2t3 + r2s2s3 − r1t1t2 + s3t1 − s1t3) ,
A2 = −cr2s2 − cr1t2 + cs3 − ct1 + r2s2t2 − r1t

2
2 + s3t2 − 2s2t3 − t1t2,

A3 = r2 (cr1t2 + s3 (c + 2t2) − ct1 − s2t3) + t3 (−r1 (2c + t2) − s3 − t1) − cr2
2s2 ,

and 
√
A1 /∈ Q.

Similarly one finds that it is not possible to have adg 
= 0, ad−1 ∈ Q and gd−1 /∈ R.

Claim 4. If a 
= 0, then w = dg−1 /∈ R. Assume that there is R ∈ Q − {0} such 
that d = Rg. In this case U = gSpanZ{R, 1, Rh − f, cR, c}. Let us consider U2 =
SpanZ{1, Rh −f, c}, since U is discrete we conclude that there are R1, R2 ∈ Q such that 
Rh − f = R1 + R2C, thus {1, c, f, h} is Q-linearly dependent, which is a contradiction. 
Thus W = {d, g, dh − gf, cd, cg}. On the other hand there are r0, r1, r2, r3 ∈ R such that 
c = r0 + r1w = r2 + r3w

−1. Therefore

cg = r0g + dr1,

cd = r2d + r3g .

Hence r0, r1, r2, r3 ∈ Q. Since r0 + r1w = r2 + r3w
−1 we conclude that w is a solution of 

the polynomial r1w2 + (r0 − r2)w − r3 = 0, that is

w =
r2 − r0 ±

√
(r2 − r0)2 + 4r1r3

.
2r1
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Finally, since U is discrete we deduce that there are r4, r5 ∈ Q such that dh − gf =
r4d + r5g which is equivalent to:

w = f + r5
h− r4

. �
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