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Introduction

Kleinian groups are discrete subgroups of PSL (2,C), the group
of biholomorphic automorphisms of the complex projective line
CP1 ∼= S2, acting properly and discontinuously on a non-empty
region of CP1.

PSL (2,C) =
{[

a b
c d

] ∣∣∣∣ ad − bc ̸= 0

}
∼=

{
z 7→ az + b

cz + d

∣∣∣∣ ad − bc ̸= 0

}
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Importance of Kleinian Groups

Kleinian groups have been studied since the end of the 19th
century by Fuchs, Klein, Poincaré, and many others. Kleinian
groups have played a major role in several fields of mathematics,
such as Riemann surfaces and Teichmüller theory, automorphic
forms, holomorphic dynamics, conformal and hyperbolic geome-
try, etc.
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Classification of Elements of PSL (2,C)

Type Fixed points Canonical Form Tr(A)

Parabolic 1 z 7→ z + c , c ∈ C Tr(A) = ±2
Elliptic 2 z 7→ αz , |α| = 1 Tr(A)2 < 4,

Tr(A) ∈ R
Hyperbolic 2 z 7→ αz , α > 0 Tr(A)2 > 4,

Tr(A) ∈ R
Loxodromic 2 z 7→ αz , |α| ≠ 1 Tr(A) ̸∈ R
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The Limit Set

Let Γ ⊂ PSL (2,C) be a group and z ∈ CP1, then the orbit of
z is {γ(z)}γ∈Γ.

The set of accumulation points of orbits of a Kleinian group Γ
is called the limit set of the group, Λ(Γ).

Λ(Γ) is closed and invariant under Γ.
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Elementary Kleinian Groups

Elementary Kleinian groups are discrete subgroups of PSL (2,C)
such that the limit set is a finite set. It is empty or it consists of
1 or 2 points.

Equivalently, a Kleinian group is elementary if it is virtually
abelian; that is, it has an abelian subgroup of finite index.
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Generalize to higher dimensions

Discrete subgroups of
isometries of hyperbolic
3-space H3

R (discrete
groups of conformal
automorphisms of the
sphere at infinity)

∼= Discrete groups of holo-
morphic transformations
of the complex projective
line CP1 ∼= S2 acting with
nonempty region of dis-
continuity.y y

Conformal Kleinian
Groups

Complex Kleinian Groups
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Preliminaries

The complex projective plane CP2 is defined as

CP2 =
(
C3 \ {0}

)
/C∗,

where C∗ acts by the usual scalar multiplication. Let

[ ] : C3 \ {0} → CP

be the quotient map. We denote the projectivization of the
point x = (x1, x2, x3) ∈ C3 by [x ] = [x1 : x2 : x3]. We denote by
e1, e2, e3 the projectivization of the canonical base of C3.
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Preliminaries

Let GL (3,C) ⊂ M3 (C) be the subgroup of matrices with de-
terminant not equal to 0. The group of biholomorphic automor-
phisms of CP2 is given by

PSL (3,C) := GL (3,C) /{scalar matrices}.

We denote the upper triangular subgroup of PSL (3,C) by

U+ =


 a11 a12 a13

0 a22 a23
0 0 a33

 ∣∣∣∣∣∣ a11a22a33 = 1, aij ∈ C

 .
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Preliminaries

As in the case of automorphisms of CP1, we classify the elements
of PSL (3,C) in three classes: elliptic, parabolic and loxodromic.
However, unlike the classical case, there are several subclasses
in each case. We now give a quick summary of the subclasses
of elements we will be using.
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Classification of elements of PSL (3,C)

An element g ∈ PSL (3,C) is said to be:

Elliptic if it has a diagonalizable lift in SL (3,C) such that
every eigenvalue has norm 1.

Parabolic if it has a non-diagonalizable lift in SL (3,C)
such that every eigenvalue has norm 1.



Complex
Kleinian
Groups

Introduction

Complex
Kleinian
Groups: An
overview

Main
Theorems

Proof of the
Theorem

Generalizations

Classification of elements of PSL (3,C)

Loxodromic if it has a lift in SL (3,C) with an eigenvalue
of norm distinct of 1. Furthermore, we say that g is:

Loxo-parabolic

h =

 λ 1 0
0 λ 0
0 0 λ−2

 , |λ| ≠ 1.

A complex homothety, h = Diag
(
λ, λ, λ−2

)
, |λ| ≠ 1.

A rational (resp. irrational) screw, h = Diag (λ1, λ2, λ3),
|λ1| = |λ2| ≠ |λ3| and λ1λ

−1
2 = e2πiθ with θ ∈ Q (resp.

θ ∈ R \Q).
Strongly loxodromic, h = Diag (λ1, λ2, λ3), where
{|λ1|, |λ2|, |λ3|} are pairwise different.
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The Kulkarni Limit Set

From now on, let Γ ⊂ PSL (3,C) be a discrete subgroup acting
on CP2.

Definition

Let L0(Γ) be the closure of the set of points in CPn with
infinite isotropy group.

Let L1(Γ) be the closure of the set of cluster points of orbits
of points in CPn \ L0(Γ).
Let L2(Γ) be the closure of the set of cluster points of com-
pact sets of CPn \ (L0(Γ) ∪ L1(Γ)).

ΛKul(Γ) = L0(Γ) ∪ L1(Γ) ∪ L2(Γ), ΩKul(Γ) = CPn \ ΛKul(Γ).



Complex
Kleinian
Groups

Introduction

Complex
Kleinian
Groups: An
overview

Main
Theorems

Proof of the
Theorem

Generalizations

Limit sets for complex Kleinian groups

The Kulkarni limit set ΛKul(Γ) in CP2 is made up of points and
complex projective lines. It contains 1, 2, 3, 4 or ∞ lines in
general position.

The equicontinuity region for Γ, denoted Eq(Γ), is defined to be
the set of points z ∈ CPn for which there is an open neighbor-
hood U of z such that Γ restricted to U is a normal family.
Γ acts properly and discontinuously on Eq(Γ), and

Eq(Γ) ⊂ ΩKul(Γ).
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Elementary Complex Kleinian Group

How can we define elementary complex Kleinian groups?

Discrete subgroups of PSL (3,C) such that its Kulkarni limit
set contains a finite number of lines.

Discrete subgroups of PSL (3,C) such that its Kulkarni limit
set contains a finite number of lines in general position.

Discrete subgroups of PSL (3,C) with reducible action.

Discrete solvable subgroups of PSL (3,C).
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Solvable groups

If g , h ∈ G , we define the commutator as [g , h] = g−1h−1gh.

We define the commutator subgroup as

[G ,G ] = {[g , h] | g , h ∈ G} .

The derived series of G is given by

G (0) = G , G (i+1) =
[
G (i),G (i)

]
.

We say that G is solvable if, for some n ≥ 0, we have
G (n) = {id}.
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Solvable groups: Examples

The infinite dihedral group is solvable

Dih∞ = ⟨Rot∞, z 7→ −z⟩.

Any triangular group is solvable, with solvability length at
most 3.

The special orthogonal group is not solvable,{[
a −c
c a

] ∣∣∣∣ |a|2 + |b|2 = 1

}
⊂ PSL (2,C)

Cyclic groups, abelian groups.
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Background

Action on CP2

Irreducible ✓

Reducible action

{

Solvable

Non-solvable
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Main Result - Part 1: The Dynamics

Theorem (2020)

Let Γ ⊂ PSL (3,C) be a triangularizable complex Kleinian group
such that its Kulkarni limit set does not consist of exactly four
lines in general position. Then there exists a non-empty open
region ΩΓ ⊂ CP2 such that

(i) ΩΓ is the maximal open set where the action is proper and
discontinuous.

(ii) ΩΓ is homeomorphic to one of the following regions: C2,
C2 \ {0}, C× (H+ ∪H−) or C× C∗.

(iii) Γ is finitely generated and rank(Γ) ≤ 4.
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Main Result - Part 1: The Dynamics

Theorem (2020)

Let Γ ⊂ PSL (3,C) be a triangularizable complex Kleinian group
such that its Kulkarni limit set does not consist of exactly four
lines in general position. Then

(iv) The group Γ can be written as

Γ = Γp ⋊ ⟨η1⟩⋊ ...⋊ ⟨ηm⟩︸ ︷︷ ︸
loxo-parabolic

⋊ ⟨γ1⟩⋊ ...⋊ ⟨γn⟩︸ ︷︷ ︸
strongly loxodromic

where Γp is the subgroup of Γ consisting of all the
parabolic elements of Γ.

(v) The group Γ leaves a full flag invariant.
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Main Result - Part 1: The Dynamics

Theorem (2020)

Let Γ ⊂ PSL (3,C) be a solvable complex Kleinian group such
that its Kulkarni limit set does not consist of exactly four lines
in general position. Then

(iv) The group Γ can be written as

Γ = Γp ⋊ ⟨η1⟩⋊ ...⋊ ⟨ηm⟩︸ ︷︷ ︸
loxo-parabolic

⋊ ⟨γ1⟩⋊ ...⋊ ⟨γn⟩︸ ︷︷ ︸
strongly loxodromic

where Γp is the subgroup of Γ consisting of all the
parabolic elements of Γ.

(v) The group Γ leaves a full flag invariant.



Complex
Kleinian
Groups

Introduction

Complex
Kleinian
Groups: An
overview

Main
Theorems

Proof of the
Theorem

Generalizations

Notation

(1) Torus groups,

T (W ) =


 1 0 x

0 1 y
0 0 1

 ∣∣∣∣∣∣ (x , y) ∈W


where W ⊂ C2 is a additive subgroup.

(2) Dual torus groups,

T ∗(W ) =


 1 x y

0 1 0
0 0 1

 ∣∣∣∣∣∣ (x , y) ∈W


where W ⊂ C2 is a discrete additive subgroup with
r(W ) ≤ 2.
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Up to conjugation and a finite index subgroup, there are 16 types
of non-cyclic, discrete solvable subgroups containing loxodromic
elements.

We study these groups by exploring the parabolic part of the
group. If Γ ⊂ PSL (3,C) is a group, we denote by Γp ⊂ Γ the
subgroup generated by all parabolic elements of Γ. We will say
that Γp is the parabolic part of Γ. Parabolic Part.

Barrera, W., Cano, A., Navarrete, J. P., & Seade, J. (2022). Discrete

parabolic groups in PSL (3, C). Linear Algebra and its Applications, 653,

430-500.

https://github.com/gmauricio-toledo/gmauricio-toledo.github.io/raw/master/assets/Representations_of_Solvable_Subgroups_of_PSL_3_C_.pdf
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Main Result - Part 2: The Representations

Theorem (2023)

Main Theorems...

https://github.com/gmauricio-toledo/gmauricio-toledo.github.io/raw/master/assets/Representations_of_Solvable_Subgroups_of_PSL_3_C_.pdf
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Ideas behind the proof

The parabolic part is described in

Barrera, W., Cano, A., Navarrete, J. P., & Seade, J. (2022). Discrete

parabolic groups in PSL (3, C). Linear Algebra and its Applications, 653,

430-500.
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(v) Invariant Flag

Borel fixed point theorem: Let G be a connected solvable group
acting morphically on a non-empty complete variety V . Then G
has a fixed point in V . Morphical action

Applying this theorem to the Zariski closure of Γ yields that Γ is
virtually triangularizable. Namely, Γ has a finite index subgroup
such that, up to conjugation, is upper triangular.

This proves (v).
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Conclusions (i)-(iv) are proved together.
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Restrictions on the Elements of a
Non-commutative Group

Proposition

Let Γ ⊂ U+ be a discrete subgroup. Let γ ∈ Γ be an irrational
screw γ = Diag(β−2e−6πiθ, βe4πiθ, βe2πiθ), for some |β| ≠ 1
and θ ∈ R \Q, then Γ is commutative.

Proposition

Let Γ ⊂ U+ be a non-commutative, torsion-free discrete sub-
group, then Γ cannot contain a type I complex homothety.
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The Core of a Group

The core of Γ is an important purely parabolic subgroup of a
complex Kleinian group Γ which determines the dynamics of Γ.

Proposition

The elements of Core(Γ) have the form

gx ,y =

 1 x y
0 1 0
0 0 1

 ,

for some x , y ∈ C.
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The Core of a Group

It is straightforward to verify that

ΛKul (Core(Γ)) =
⋃

gx,y∈Core(Γ)

←−−−−−−−−→
e1, [0 : −y : x ]

We denote this pencil of lines by C(Γ) = ΛKul (Core(Γ)).

Proposition

Let Γ ⊂ U+ be a discrete group, then every element of Γ leaves
C(Γ) invariant.
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Commutativity


Γ is not commutative

Γ is commutative
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Decomposition of Non-Commutative Triangular
Groups

Theorem

Let Γ ⊂ U+ be a non-commutative, torsion free, complex
Kleinian group, then

Γ = Core(Γ)⋊ ⟨ξ1⟩⋊ ...⋊ ⟨ξr ⟩⋊
⋊ ⟨η1⟩⋊ ...⋊ ⟨ηm⟩⋊ ⟨γ1⟩⋊ ...⋊ ⟨γn⟩.

Furthermore, if k = rank (Core(Γ)) then k + r +m + n ≤ 4.
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Parabolic Loxodromic︷ ︸︸ ︷ ︷ ︸︸ ︷ 1 x y
0 1 0
0 0 1

  1 x y
0 1 z
0 0 1

  α x y
0 β z
0 0 β

  α x y
0 β z
0 0 γ


z ̸= 0 α ̸= β, z ̸= 0 β ̸= γ

Loxo-parabolic Strongly loxodromic

Core(Γ) A \ Ker(Γ) Ker(λ23) \ A
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Morphisms λ

Let λ12, λ23, λ13 : (U+, ·)→ (C∗, ·) be the group morphisms
given by

λ12 ([αij ]) = α11α
−1
22

λ23 ([αij ]) = α22α
−1
33

λ13 ([αij ]) = α11α
−1
33 .

Strategy of the proof:

Decomposition of Γ in terms of Ker(λ23).

Decompose Ker(λ23) in terms of Ker(λ12).

Decompose A = Ker(λ12) ∩ Ker(λ23) in terms of Ker(Γ)
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Rank

Theorem (Bestvina, Kapovich, Kleiner)

Let Γ be a group acting properly and discontinuously on a con-
tractible manifold of dimension m, then obdim(Γ) ≤ m.

In our case, it can be re-stated as:

Theorem

Let Γ ⊂ U+ be a non-commutative, torsion free, complex
Kleinian group acting properly and discontinuously on a sim-
ply connected domain Ω ⊂ CP2, then k + r +m + n ≤ 4.

Find a simply connected domain Ω ⊂ CP2 where Γ acts prop-
erly and discontinuously, and then apply the theorem. In some
cases, we write the explicit decomposition of Γ and verify that
rank(Γ) ≤ 4.
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Some cases

Denote Σ = Π(Γ). If Σ is discrete and Ker(Γ) is finite. If
|Λ(Σ)| ≠ 2, let

Ω =

 ⋃
z∈Ω(Σ)

←−→e1, z

 \ {e1}.
We know that Γ acts properly and discontinuously on Ω. If
|Λ(Σ)| = 0, 1 or ∞, then each connected component of Ω is
simply connected, since they are respectively homeomorphic to
CP2, C2 or C×H. By the theorem, it follows k+ r +m+n ≤ 4
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For non-commutative Γ, using these ideas, we have constructed
an open subset ΩΓ ⊂ CP2 such that the orbits of every compact
set K ⊂ ΩΓ accumulate on CP2 \ ΩΓ. Thus we can define a
limit set for the action of Γ by ΛΓ := CP2 \ ΩΓ. This limit set
describes the dynamics of Γ, and the open region ΩΓ satisfies (i)
and (ii).

Also, we prove that rank(Γ) ≤ 4. This verifies (iii).
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Commutative groups

Theorem (Barrera, Cano, Navarrete, Seade)

Let Γ ⊂ U+ be a commutative group, then Γ is conjugate in
PSL (3,C) to a subgroup of one of the following Abelian Lie
Groups:

C1 =


 α−2 0 0

0 α β
0 0 α

∣∣∣∣∣∣α ∈ C∗, β ∈ C

 .

C2 =
{
Diag

(
α, β, α−1β−1

) ∣∣α, β ∈ C∗} .
C3 =


 1 0 β

0 1 γ
0 0 1

∣∣∣∣∣∣β, γ ∈ C

 .
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Commutative groups

Theorem (Barrera, Cano, Navarrete, Seade)

C4 =


 1 β γ

0 1 0
0 0 1

∣∣∣∣∣∣β, γ ∈ C

 .

C5 =


 1 β γ

0 1 β
0 0 1

∣∣∣∣∣∣β, γ ∈ C

 .
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Case 1: Form

Proposition

Let Γ ⊂ U+ be a commutative subgroup such that each
element of Γ has the form C1. Then there exists an additive
subgroup W ⊂ (C,+), and a group morphism
µ : (W ,+)→ (C∗, ·) such that

Γ = ΓW ,µ =


 µ(w)−2 0 0

0 µ(w) wµ(w)
0 0 µ(w)

 ∣∣∣∣∣∣w ∈W

 .
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Case 1: Discreteness and Rank

Proposition

Let Γ = ΓW ,µ ⊂ U+ be a group as described in previous proposi-
tion. Γ is discrete if and only if rank(W ) ≤ 3 and the morphism
µ satisfies the following condition:

(C) Whenever we have a sequence {wk} ∈W of distinct
elements such that wk → 0, either µ(wk)→ 0 or
µ(wk)→∞.
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Case Conditions

C1.1 µ(W ) has rational rotations and W is
discrete.

C1.2 µ(W ) has rational rotations and W is
not discrete.

C1.3 µ(W ) has no rational rotations but
has irrational rotations, and W is dis-
crete.

C1.4 µ(W ) has no rational or irrational ro-
tations, and W is discrete.

C1.5 µ(W ) has no rational rotations but
has irrational rotations, and W is not
discrete.

C1.6 µ(W ) has no rational or irrational ro-
tations, and W is not discrete.
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Case 1: Kulkarni Limit Set

Theorem

Let Γ ⊂ PSL (3,C) be a commutative discrete group having the
form given previous proposition, then

ΛKul(Γ) =



←−→e1, e2,

{
Cases C1.3 or C1.4, with condition (F)

Case C1.1

{e1} ∪←−→e2, e3, Cases C1.5 or C1.6 no condition (F).

←−→e1, e2 ∪←−→e2, e3,

{
Cases C1.5 or C1.6, with condition (F)

Case C1.2
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Case 2: Form

Proposition

Let Γ ⊂ U+ be a commutative subgroup such that each
element of Γ has the form Diag(α, β, α−1β−1). Then there
exist two multiplicative subgroups W1,W2 ⊂ (C∗, ·) such that

Γ = ΓW1,W2 = {Diag(w1,w2, 1) |w1 ∈W1, w2 ∈W2} .
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Case 2: Rank

Proposition

Let Γ ⊂ U+ be a diagonal discrete group such that every
element has the form γ = Diag(w1,w2, 1). Then rank(Γ) ≤ 2.
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Case 2

If αn = βm for some n,m ∈ Z:
[D1] L0(Γ) ∪ L1(Γ) =

←−→e1, e2 ∪ {e3}, if |α| > 1 > |β| or
|α| < 1 < |β|.

[D2] L0(Γ) ∪ L1(Γ) =
←−→e1, e2 ∪ {e3}, if |α| > |β| > 1 or

|α| < |β| < 1.

If there are no integers n,m such that αn = βm:

[D3] L0(Γ) ∪ L1(Γ) = {e1, e2, e3}, if |α| > 1 > |β| or
|α| < 1 < |β|.

[D4] L0(Γ) ∪ L1(Γ) = {e1, e2, e3}, if |α| > |β| > 1 or
|α| < |β| < 1.

[D5] L0(Γ)∪ L1(Γ) =←−→e1, e2 ∪←−→e2, e3, if β is an irrational rotation.
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Case 2: Kulkarni Limit Set

Theorem

Let Γα,β ⊂ U+ be a discrete group containing loxodromic
elements, then

(i) ΛKul(Γ) =
←−→e1, e2 ∪ {e3} in Cases [D1] and [D2].

(ii) ΛKul(Γ) = {e1, e2, e3} in Cases [D3] and [D4].

(iii) ΛKul(Γ) =
←−→e1, e2 ∪←−→e2, e3 in Case [D5].



Complex
Kleinian
Groups

Introduction

Complex
Kleinian
Groups: An
overview

Main
Theorems

Proof of the
Theorem

Generalizations

Commutative case: Proof of the Main Theorem

If Γ is commutative, it is conjugate to a sugroup of the Lie
groups C1 or C2. In this setting, the region ΩKul(Γ) satisfies
conclusions (i) and (ii) as a consequence of the previous
heorems. Again, rank(Γ) ≤ 4, this proves conclusion (iii).

On the other hand, Γ ∼= Zr with r = rank(Γ), and then we can
write Γ as a trivial semidirect product of copies of Z, thus
verifying conclusion (iv).
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A First Generalization ✓

Theorem

Let Γ ⊂ PSL (3,C) be a solvable complex Kleinian group such
that its Kulkarni limit set does not consist of exactly four lines
in general position. Let Γ0 ⊂ Γ be a virtually triangularizable
finite index subgroup. If Γ0 is commutative then there exists a
non-empty open region ΩΓ ⊂ CP2 such that

(i) ΩΓ is the maximal open set where the action is proper and
discontinuous.

(ii) ΩΓ is homeomorphic to one of the following regions: C2,
C2 \ {0}, C× (H+ ∪H−) or C× C∗.

(iii) Up to a finite index subgroup, the group Γ leaves a full
flag invariant.
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Thank you
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A Group Acting Morphically

Definition

Let G be an algebraic group, V a variety, and let α : G×V → V
be an action of the group G in V , (g , x) 7→ gx = α(g , x). One
says that G acts morphically on V if the action α satisfies the
following axioms:

(i) α(e, x) = x , for any x ∈ V , where e ∈ G is the identity
element.

(ii) α(g , hx) = α(gh, x) for any g , h ∈ G and x ∈ V .

Solvable groups are virtually triangular
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