

Comple Kleiniar Groups

Introductio

Kleinian Groups: An overview

Main Theorems

Proof of the Theorem

Generalizations

Complex Kleinian Groups

Generalizing the classical case

Mauricio Toledo-Acosta

Departamento de Matemáticas Universidad de Sonora

Table of Contents

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Theorems

Proof of the Theorem

eneralization

- Introduction
- 2 Complex Kleinian Groups: An overview
- Main Theorems
- 4 Proof of the Theorem
- Generalizations

Introduction

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Main Theorems

Proof of t

Canaralizations

Kleinian groups are discrete subgroups of PSL $(2,\mathbb{C})$, the group of biholomorphic automorphisms of the complex projective line $\mathbb{CP}^1 \cong \mathbb{S}^2$, acting properly and discontinuously on a non-empty region of \mathbb{CP}^1 .

$$\mathsf{PSL}(2,\mathbb{C}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| ad - bc \neq 0 \right\}$$
$$\cong \left\{ z \mapsto \frac{az + b}{cz + d} \middle| ad - bc \neq 0 \right\}$$

Importance of Kleinian Groups

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorei

Proof of th Theorem

Generalization

Kleinian groups have been studied since the end of the 19th century by Fuchs, Klein, Poincaré, and many others. Kleinian groups have played a major role in several fields of mathematics, such as Riemann surfaces and Teichmüller theory, automorphic forms, holomorphic dynamics, conformal and hyperbolic geometry, etc.

Classification of Elements of PSL $(2, \mathbb{C})$

Kleinia Groups

Introduction

Complex Kleinian Groups: Ar overview

Main Theore

Proof of the Theorem

Canaralization

Type	Fixed points	Canonical Form	Tr(A)
Parabolic	1	$z\mapsto z+c,\ c\in\mathbb{C}$	$Tr(A) = \pm 2$
Elliptic	2	$z\mapsto \alpha z$, $ \alpha =1$	$Tr(A)^2 < 4$
			$\mathit{Tr}(A) \in \mathbb{R}$
Hyperbolic	2	$z\mapsto \alpha z,\ \alpha>0$	$Tr(A)^2 > 4$,
			$\mathit{Tr}(A) \in \mathbb{R}$
Loxodromic	2	$z\mapsto \alpha z$, $ \alpha \neq 1$	$Tr(A) ot \in \mathbb{R}$

The Limit Set

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Main Theorems

Theorem

Let $\Gamma \subset \mathsf{PSL}(2,\mathbb{C})$ be a group and $z \in \mathbb{CP}^1$, then the orbit of z is $\{\gamma(z)\}_{\gamma \in \Gamma}$.

The set of accumulation points of orbits of a Kleinian group Γ is called the limit set of the group, $\Lambda(\Gamma)$.

 $\Lambda(\Gamma)$ is closed and invariant under Γ .

Elementary Kleinian Groups

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Theorems

Theorem

Elementary Kleinian groups are discrete subgroups of PSL $(2, \mathbb{C})$ such that the limit set is a finite set. It is empty or it consists of 1 or 2 points.

Equivalently, a Kleinian group is elementary if it is virtually abelian; that is, it has an abelian subgroup of finite index.

Generalize to higher dimensions

Complex Kleiniar Groups

Introductio

Complex Kleinian Groups: An overview

Theorems

Theorem

Generalization

Discrete subgroups of isometries of hyperbolic 3-space $\mathbb{H}^3_{\mathbb{R}}$ (discrete groups of conformal automorphisms of the sphere at infinity)

Conformal Kleinian Groups Discrete groups of holomorphic transformations of the complex projective line $\mathbb{CP}^1 \cong \mathbb{S}^2$ acting with nonempty region of discontinuity.

Complex Kleinian Groups

Table of Contents

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: A overview

Main Theorems

Proof of the Theorem

Generalizations

- Introduction
- 2 Complex Kleinian Groups: An overview
- Main Theorems
- 4 Proof of the Theorem
- Generalizations

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorems

Proof of t

Caparalization

The complex projective plane \mathbb{CP}^2 is defined as

$$\mathbb{CP}^2 = \left(\mathbb{C}^3 \setminus \{0\}\right)/\mathbb{C}^*,$$

where \mathbb{C}^* acts by the usual scalar multiplication. Let

$$[\;]:\mathbb{C}^3\setminus\{0\}\to\mathbb{CP}$$

be the quotient map. We denote the projectivization of the point $x=(x_1,x_2,x_3)\in\mathbb{C}^3$ by $[x]=[x_1:x_2:x_3]$. We denote by e_1,e_2,e_3 the projectivization of the canonical base of \mathbb{C}^3 .

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theorem

Proof of the Theorem

Generalization

Let $GL(3,\mathbb{C})\subset \mathcal{M}_3(\mathbb{C})$ be the subgroup of matrices with determinant not equal to 0. The group of biholomorphic automorphisms of \mathbb{CP}^2 is given by

$$PSL(3,\mathbb{C}) := GL(3,\mathbb{C})/\{scalar \ matrices\}.$$

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorem:

Proof of

Ceneralization

Let $GL(3,\mathbb{C})\subset \mathcal{M}_3(\mathbb{C})$ be the subgroup of matrices with determinant not equal to 0. The group of biholomorphic automorphisms of \mathbb{CP}^2 is given by

$$\mathsf{PSL}\left(3,\mathbb{C}\right) := \mathsf{GL}\left(3,\mathbb{C}\right)/\{\mathsf{scalar\ matrices}\}.$$

We denote the upper triangular subgroup of PSL $(3,\mathbb{C})$ by

$$U_+ = \left\{ \left[egin{array}{cccc} a_{11} & a_{12} & a_{13} \ 0 & a_{22} & a_{23} \ 0 & 0 & a_{33} \end{array}
ight] \left| egin{array}{cccc} a_{11} a_{22} a_{33} = 1, \ a_{ij} \in \mathbb{C} \end{array}
ight\}.$$

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: A overview

Main Theorems

Proof of t

Generalization

As in the case of automorphisms of \mathbb{CP}^1 , we classify the elements of PSL $(3,\mathbb{C})$ in three classes: elliptic, parabolic and loxodromic. However, unlike the classical case, there are several subclasses in each case. We now give a quick summary of the subclasses of elements we will be using.

Classification of elements of PSL $(3, \mathbb{C})$

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorems

Proof of the Theorem

Generalization

An element $g \in PSL(3, \mathbb{C})$ is said to be:

- Elliptic if it has a diagonalizable lift in $SL(3,\mathbb{C})$ such that every eigenvalue has norm 1.
- Parabolic if it has a non-diagonalizable lift in $SL(3,\mathbb{C})$ such that every eigenvalue has norm 1.

Classification of elements of PSL $(3, \mathbb{C})$

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theorems

Proof of the Theorem

Generalization:

- Loxodromic if it has a lift in $SL(3,\mathbb{C})$ with an eigenvalue of norm distinct of 1. Furthermore, we say that g is:
 - Loxo-parabolic

$$\mathbf{h}=\left(egin{array}{ccc} \lambda & 1 & 0 \ 0 & \lambda & 0 \ 0 & 0 & \lambda^{-2} \end{array}
ight),\; |\lambda|
eq 1.$$

- A complex homothety, $\mathbf{h} = \text{Diag}(\lambda, \lambda, \lambda^{-2}), |\lambda| \neq 1.$
- A rational (resp. irrational) screw, $\mathbf{h} = \text{Diag}(\lambda_1, \lambda_2, \lambda_3)$, $|\lambda_1| = |\lambda_2| \neq |\lambda_3|$ and $\lambda_1 \lambda_2^{-1} = e^{2\pi i \theta}$ with $\theta \in \mathbb{Q}$ (resp. $\theta \in \mathbb{R} \setminus \mathbb{Q}$).
- Strongly loxodromic, $\mathbf{h} = \mathrm{Diag}\left(\lambda_1, \lambda_2, \lambda_3\right)$, where $\{|\lambda_1|, |\lambda_2|, |\lambda_3|\}$ are pairwise different.

The Kulkarni Limit Set

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: A overview

Main Theorer

Proof of th Theorem

Generalization

From now on, let $\Gamma \subset \mathsf{PSL}(3,\mathbb{C})$ be a discrete subgroup acting on \mathbb{CP}^2 .

Definition

- Let $L_0(\Gamma)$ be the closure of the set of points in \mathbb{CP}^n with infinite isotropy group.
- Let $L_1(\Gamma)$ be the closure of the set of cluster points of orbits of points in $\mathbb{CP}^n \setminus L_0(\Gamma)$.
- Let $L_2(\Gamma)$ be the closure of the set of cluster points of compact sets of $\mathbb{CP}^n \setminus (L_0(\Gamma) \cup L_1(\Gamma))$.

$$\Lambda_{Kul}(\Gamma) = \overline{L_0(\Gamma) \cup L_1(\Gamma) \cup L_2(\Gamma)}, \quad \Omega_{Kul}(\Gamma) = \mathbb{CP}^n \setminus \Lambda_{Kul}(\Gamma).$$

Limit sets for complex Kleinian groups

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Al overview

Main Theore

Proof of tl Theorem

Generalization

The Kulkarni limit set $\Lambda_{\text{Kul}}(\Gamma)$ in \mathbb{CP}^2 is made up of points and complex projective lines. It contains 1, 2, 3, 4 or ∞ lines in general position.

The equicontinuity region for Γ , denoted Eq(Γ), is defined to be the set of points $z \in \mathbb{CP}^n$ for which there is an open neighborhood U of z such that Γ restricted to U is a normal family. Γ acts properly and discontinuously on Eq(Γ), and

$$Eq(\Gamma) \subset \Omega_{Kul}(\Gamma)$$
.

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorems

Proof of the Theorem

Generalizations

How can we define *elementary* complex Kleinian groups?

• Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines.

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Main Theorems

Theorem

Generalization

How can we define *elementary* complex Kleinian groups?

- Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines.
- Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines in general position.

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Main Theorem

Proof of t

Generalization

How can we define *elementary* complex Kleinian groups?

- Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines.
- Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines in general position.
- Discrete subgroups of PSL $(3, \mathbb{C})$ with reducible action.

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Main Theorems

Proof of th

Generalization

How can we define *elementary* complex Kleinian groups?

- Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines.
- Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines in general position.
- Discrete subgroups of PSL $(3, \mathbb{C})$ with reducible action.
- Discrete solvable subgroups of PSL $(3, \mathbb{C})$.

Solvable groups

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorems

Proof of t

Ceneralization

- If $g, h \in G$, we define the commutator as $[g, h] = g^{-1}h^{-1}gh$.
- We define the commutator subgroup as

$$[G, G] = \{[g, h] | g, h \in G\}.$$

• The derived series of G is given by

$$G^{(0)} = G, \quad G^{(i+1)} = \left[G^{(i)}, G^{(i)}\right].$$

• We say that G is solvable if, for some $n \ge 0$, we have $G^{(n)} = \{id\}.$

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: A overview

Main Theorems

Proof of t

Generalization

The infinite dihedral group is solvable

$$\mathsf{Dih}_{\infty} = \langle \mathsf{Rot}_{\infty}, \ z \mapsto -z \rangle.$$

- Any triangular group is solvable, with solvability length at most 3.
- The special orthogonal group is not solvable,

$$\left\{ \left[\begin{array}{cc} a & -c \\ c & \overline{a} \end{array} \right] \middle| |a|^2 + |b|^2 = 1 \right\} \subset \mathsf{PSL}\left(2,\mathbb{C}\right)$$

Cyclic groups, abelian groups.

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: Ar overview

Main Theorems

Theorem

Generalization:

The infinite dihedral group is solvable

$$\mathsf{Dih}_{\infty} = \langle \mathsf{Rot}_{\infty}, \ z \mapsto -z \rangle.$$

- Any triangular group is solvable, with solvability length at most 3.
- The special orthogonal group is not solvable,

$$\left\{ \left[\begin{array}{cc} a & -c \\ c & \overline{a} \end{array} \right] \middle| |a|^2 + |b|^2 = 1 \right\} \subset \mathsf{PSL}\left(2,\mathbb{C}\right)$$

Cyclic groups, abelian groups.

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: Al overview

Main Theorems

Proof of the

Generalization:

The infinite dihedral group is solvable

$$\mathsf{Dih}_{\infty} = \langle \mathsf{Rot}_{\infty}, \ z \mapsto -z \rangle.$$

- Any triangular group is solvable, with solvability length at most 3.
- The special orthogonal group is not solvable,

$$\left\{\left[egin{array}{cc} a & -c \ c & \overline{a} \end{array}
ight] \Big| |a|^2 + |b|^2 = 1
ight\} \subset \mathsf{PSL}\left(2,\mathbb{C}
ight)$$

Cyclic groups, abelian groups.

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theorems

Proof of the

Generalization

The infinite dihedral group is solvable

$$\mathsf{Dih}_{\infty} = \langle \mathsf{Rot}_{\infty}, \ z \mapsto -z \rangle.$$

- Any triangular group is solvable, with solvability length at most 3.
- The special orthogonal group is not solvable,

$$\left\{\left[egin{array}{cc} a & -c \ c & \overline{a} \end{array}
ight] \Big| |a|^2 + |b|^2 = 1
ight\} \subset \mathsf{PSL}\left(2,\mathbb{C}
ight)$$

• Cyclic groups, abelian groups.

Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theorems

Proof of the

Generalizations

Action on \mathbb{CP}^2

Kleinian Groups

Introduction

Complex Kleinian Groups: Ar overview

Main Theorems

Proof of the Theorem

Generalizations

Action on \mathbb{CP}^2

Irreducible

Kleinian Groups

Introduction

Complex Kleinian Groups: Ar overview

Main Theorems

Proof of the

Generalizations

Action on \mathbb{CP}^2

Irreducible \checkmark

Kleinian Groups

Introductio

Kleinian Groups: An overview

Main Theorems

Proof of the Theorem

Generalizations

Action on \mathbb{CP}^2

Irreducible \checkmark

Reducible action $\bigg\{$

Kleinian Groups

Introductio

Kleinian Groups: An overview

Main Theorems

Proof of the Theorem

Generalizations

Action on \mathbb{CP}^2

Irreducible \checkmark Reducible action $\begin{cases} \mathsf{Solvable} \end{cases}$

Kleinian Groups

Introductio

Kleinian Groups: An overview

Main Theorems

Proof of the Theorem

Generalizations

Action on \mathbb{CP}^2

Complex Kleinian Groups

Introductio

Kleinian Groups: An overview

Main Theorems

Proof of the Theorem

Generalizations

Action on \mathbb{CP}^2

Irreducible \checkmark Reducible action $\begin{cases} \text{Solvable} \\ \text{Non-solvable} \end{cases}$

Table of Contents

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theorem

Proof of the Theorem

Generalization

- Introduction
 - 2 Complex Kleinian Groups: An overview
- Main Theorems
- 4 Proof of the Theorem
- Generalizations

Main Result - Part 1: The Dynamics

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorem

Proof of the Theorem

Generalization

Theorem (2020)

Let $\Gamma \subset PSL(3,\mathbb{C})$ be a triangularizable complex Kleinian group such that its Kulkarni limit set does not consist of exactly four lines in general position. Then there exists a non-empty open region $\Omega_{\Gamma} \subset \mathbb{CP}^2$ such that

- \bigcirc Ω_{Γ} is the maximal open set where the action is proper and discontinuous.
- ① Ω_{Γ} is homeomorphic to one of the following regions: \mathbb{C}^2 , $\mathbb{C}^2 \setminus \{0\}$, $\mathbb{C} \times (\mathbb{H}^+ \cup \mathbb{H}^-)$ or $\mathbb{C} \times \mathbb{C}^*$.
- \bullet Γ is finitely generated and rank $(\Gamma) \leq 4$.

Main Result - Part 1: The Dynamics

Theorem (2020)

Let $\Gamma \subset PSL(3,\mathbb{C})$ be a triangularizable complex Kleinian group such that its Kulkarni limit set does not consist of exactly four lines in general position. Then

The group Γ can be written as

$$\Gamma = \Gamma_p \rtimes \underbrace{\langle \eta_1 \rangle \rtimes ... \rtimes \langle \eta_m \rangle}_{\textit{loxo-parabolic}} \rtimes \underbrace{\langle \gamma_1 \rangle \rtimes ... \rtimes \langle \gamma_n \rangle}_{\textit{strongly loxodromic}}$$

where Γ_p is the subgroup of Γ consisting of all the parabolic elements of Γ .

The group Γ leaves a full flag invariant.

Main Result - Part 1: The Dynamics

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theorems

Theorem

Concrelization

Theorem (2020)

Let $\Gamma \subset PSL(3,\mathbb{C})$ be a solvable complex Kleinian group such that its Kulkarni limit set does not consist of exactly four lines in general position. Then

The group Γ can be written as

$$\Gamma = \Gamma_p \rtimes \underbrace{\langle \eta_1 \rangle \rtimes ... \rtimes \langle \eta_m \rangle}_{\textit{loxo-parabolic}} \rtimes \underbrace{\langle \gamma_1 \rangle \rtimes ... \rtimes \langle \gamma_n \rangle}_{\textit{strongly loxodromic}}$$

where Γ_p is the subgroup of Γ consisting of all the parabolic elements of Γ .

The group Γ leaves a full flag invariant.

Notation

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: Ar overview

Main Theorems

Proof of the Theorem

Conoralization

Torus groups,

$$\mathcal{T}(W) = \left\{ \begin{bmatrix} 1 & 0 & x \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \middle| (x, y) \in W \right\}$$

where $W \subset \mathbb{C}^2$ is a additive subgroup.

Oual torus groups,

$$\mathcal{T}^*(W) = \left\{ \left[egin{array}{ccc} 1 & x & y \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight] \left| (x,y) \in W
ight\}$$

where $W \subset \mathbb{C}^2$ is a discrete additive subgroup with $r(W) \leq 2$.

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorem

Proof of th Theorem

Generalizatio

Up to conjugation and a finite index subgroup, there are 16 types of non-cyclic, discrete solvable subgroups containing loxodromic elements.

We study these groups by exploring the parabolic part of the group. If $\Gamma \subset \mathsf{PSL}(3,\mathbb{C})$ is a group, we denote by $\Gamma_p \subset \Gamma$ the subgroup generated by all parabolic elements of Γ . We will say that Γ_p is the parabolic part of Γ . Parabolic Part.

Barrera, W., Cano, A., Navarrete, J. P., & Seade, J. (2022). Discrete parabolic groups in PSL (3, C). Linear Algebra and its Applications, 653, 430-500.

Main Result - Part 2: The Representations

Kleiniar Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theorem

Proof of the

Generalizations

Theorem (2023)

Main Theorems...

Table of Contents

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Al overview

Theorems

Proof of the Theorem

. Generalization

- Introduction
 - 2 Complex Kleinian Groups: An overview
- Main Theorems
- 4 Proof of the Theorem
- Generalizations

Ideas behind the proof

Kleiniar Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theorer

Proof of the Theorem

Generalization:

The parabolic part is described in

Barrera, W., Cano, A., Navarrete, J. P., & Seade, J. (2022). Discrete parabolic groups in PSL (3, C). Linear Algebra and its Applications, 653, 430-500.

(v) Invariant Flag

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorem

Proof of the Theorem

Generalizations

Borel fixed point theorem: Let G be a connected solvable group acting morphically on a non-empty complete variety V. Then G has a fixed point in V. Morphical action

Applying this theorem to the Zariski closure of Γ yields that Γ is virtually triangularizable. Namely, Γ has a finite index subgroup such that, up to conjugation, is upper triangular.

This proves (v)

(v) Invariant Flag

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorer

Proof of the Theorem

Generalization

Borel fixed point theorem: Let G be a connected solvable group acting morphically on a non-empty complete variety V. Then G has a fixed point in V. Morphical action

Applying this theorem to the Zariski closure of Γ yields that Γ is virtually triangularizable. Namely, Γ has a finite index subgroup such that, up to conjugation, is upper triangular.

This proves (v).

Conclusions (i)-(iv) are proved together.

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An

Main Theorems

Proof of the

Generalizations

Restrictions on the Elements of a Non-commutative Group

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theoren

Proof of the Theorem

Seneralization

Proposition

Let $\Gamma \subset U_+$ be a discrete subgroup. Let $\gamma \in \Gamma$ be an irrational screw $\gamma = \text{Diag}(\beta^{-2}e^{-6\pi i\theta},\beta e^{4\pi i\theta},\beta e^{2\pi i\theta})$, for some $|\beta| \neq 1$ and $\theta \in \mathbb{R} \setminus \mathbb{Q}$, then Γ is commutative.

Proposition

Let $\Gamma \subset U_+$ be a non-commutative, torsion-free discrete subgroup, then Γ cannot contain a type I complex homothety.

The Core of a Group

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Main Theorem

Proof of the Theorem

Generalization

The core of Γ is an important purely parabolic subgroup of a complex Kleinian group Γ which determines the dynamics of Γ .

Proposition

The elements of $Core(\Gamma)$ have the form

$$g_{x,y} = \left[\begin{array}{ccc} 1 & x & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right],$$

for some $x, y \in \mathbb{C}$.

The Core of a Group

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theore

Proof of the Theorem

Generalization

It is straightforward to verify that

$$\Lambda_{\mathsf{Kul}}\left(\mathsf{Core}(\Gamma)\right) = \bigcup_{g_{x,y} \in \mathsf{Core}(\Gamma)} \overleftarrow{e_1, [0:-y:x]}$$

We denote this pencil of lines by $C(\Gamma) = \Lambda_{Kul}(Core(\Gamma))$.

Proposition

Let $\Gamma \subset U_+$ be a discrete group, then every element of Γ leaves $\mathcal{C}(\Gamma)$ invariant.

Commutativity

Complex Kleiniar Groups

Introductio

Complex Kleinian Groups: An overview

Theorems

Proof of the Theorem

Generalizations

 $\int \Gamma$ is not commutative

Γ is commutative

Decomposition of Non-Commutative Triangular Groups

Complex Kleiniar Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorer

Proof of the Theorem

eneralization

Theorem

Let $\Gamma \subset \textit{U}_{+}$ be a non-commutative, torsion free, complex Kleinian group, then

$$\Gamma = Core(\Gamma) \rtimes \langle \xi_1 \rangle \rtimes ... \rtimes \langle \xi_r \rangle \rtimes \rtimes \langle \eta_1 \rangle \rtimes ... \rtimes \langle \eta_m \rangle \rtimes \langle \gamma_1 \rangle \rtimes ... \rtimes \langle \gamma_n \rangle.$$

Furthermore, if $k = rank(Core(\Gamma))$ then $k + r + m + n \le 4$.

Comple: Kleiniar Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theorer

Proof of the Theorem

Generalizations

${\sf Morphisms}\ \lambda$

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Theore

Proof of the Theorem

Seneralization

Let $\lambda_{12}, \lambda_{23}, \lambda_{13}: (U_+, \cdot) \to (\mathbb{C}^*, \cdot)$ be the group morphisms given by

$$\lambda_{12}([\alpha_{ij}]) = \alpha_{11}\alpha_{22}^{-1}$$
$$\lambda_{23}([\alpha_{ij}]) = \alpha_{22}\alpha_{33}^{-1}$$
$$\lambda_{13}([\alpha_{ij}]) = \alpha_{11}\alpha_{33}^{-1}.$$

Strategy of the proof:

- Decomposition of Γ in terms of $Ker(\lambda_{23})$.
- Decompose $Ker(\lambda_{23})$ in terms of $Ker(\lambda_{12})$.
- Decompose $A = \text{Ker}(\lambda_{12}) \cap \text{Ker}(\lambda_{23})$ in terms of $\text{Ker}(\Gamma)$

Rank

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Theorems

Proof of the Theorem

Conoralization

Theorem (Bestvina, Kapovich, Kleiner)

Let Γ be a group acting properly and discontinuously on a contractible manifold of dimension m, then $obdim(\Gamma) \leq m$.

Rank

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theoren

Proof of the Theorem

Generalizatio

Theorem (Bestvina, Kapovich, Kleiner)

Let Γ be a group acting properly and discontinuously on a contractible manifold of dimension m, then $obdim(\Gamma) \leq m$.

In our case, it can be re-stated as:

Theorem

Let $\Gamma \subset U_+$ be a non-commutative, torsion free, complex Kleinian group acting properly and discontinuously on a simply connected domain $\Omega \subset \mathbb{CP}^2$, then $k+r+m+n \leq 4$.

Rank

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorer

Proof of the Theorem

Generalizatio

Theorem (Bestvina, Kapovich, Kleiner)

Let Γ be a group acting properly and discontinuously on a contractible manifold of dimension m, then $obdim(\Gamma) \leq m$.

In our case, it can be re-stated as:

Theorem

Let $\Gamma \subset U_+$ be a non-commutative, torsion free, complex Kleinian group acting properly and discontinuously on a simply connected domain $\Omega \subset \mathbb{CP}^2$, then $k+r+m+n \leq 4$.

Find a simply connected domain $\Omega\subset\mathbb{CP}^2$ where Γ acts properly and discontinuously, and then apply the theorem. In some cases, we write the explicit decomposition of Γ and verify that $\mathrm{rank}(\Gamma)\leq 4$.

Some cases

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Theorer

Proof of the Theorem

Generalization

Denote $\Sigma = \Pi(\Gamma)$. If Σ is discrete and $Ker(\Gamma)$ is finite. If $|\Lambda(\Sigma)| \neq 2$, let

$$\Omega = \left(\bigcup_{z \in \Omega(\Sigma)} \overleftarrow{e_1, z} \right) \setminus \{e_1\}.$$

We know that Γ acts properly and discontinuously on Ω . If $|\Lambda(\Sigma)|=0,1$ or ∞ , then each connected component of Ω is simply connected, since they are respectively homeomorphic to \mathbb{CP}^2 , \mathbb{C}^2 or $\mathbb{C} \times \mathbb{H}$. By the theorem, it follows $k+r+m+n \leq 4$

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorer

Proof of the Theorem

Generalization:

For non-commutative Γ , using these ideas, we have constructed an open subset $\Omega_{\Gamma} \subset \mathbb{CP}^2$ such that the orbits of every compact set $K \subset \Omega_{\Gamma}$ accumulate on $\mathbb{CP}^2 \setminus \Omega_{\Gamma}$. Thus we can define a limit set for the action of Γ by $\Lambda_{\Gamma} := \mathbb{CP}^2 \setminus \Omega_{\Gamma}$. This limit set describes the dynamics of Γ , and the open region Ω_{Γ} satisfies (i) and (ii).

Also, we prove that $rank(\Gamma) \leq 4$. This verifies (iii).

Commutative groups

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Theorems Proof of the

Theorem

eneralization:

Theorem (Barrera, Cano, Navarrete, Seade)

Let $\Gamma \subset U_+$ be a commutative group, then Γ is conjugate in $PSL(3,\mathbb{C})$ to a subgroup of one of the following Abelian Lie Groups:

•

$$C_1 = \left\{ \left(\begin{array}{ccc} \alpha^{-2} & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & 0 & \alpha \end{array} \right) \middle| \alpha \in \mathbb{C}^*, \beta \in \mathbb{C} \right\}.$$

0

$$C_2 = \{ Diag(\alpha, \beta, \alpha^{-1}\beta^{-1}) \mid \alpha, \beta \in \mathbb{C}^* \}.$$

•

$$C_3 = \left\{ \left(\begin{array}{ccc} 1 & 0 & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{array} \right) \middle| \beta, \gamma \in \mathbb{C} \right\}.$$

Commutative groups

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Theorems

Theorem

Canaralizations

Theorem (Barrera, Cano, Navarrete, Seade)

•

$$C_4 = \left\{ \left(egin{array}{ccc} 1 & eta & \gamma \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight) \middle| eta, \gamma \in \mathbb{C}
ight\}.$$

•

$$\mathcal{C}_5 = \left\{ \left(egin{array}{ccc} 1 & eta & \gamma \ 0 & 1 & eta \ 0 & 0 & 1 \end{array}
ight) \middle| eta, \gamma \in \mathbb{C}
ight\}.$$

Case 1: Form

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorem

Proof of the Theorem

Seneralization

Proposition

Let $\Gamma \subset U_+$ be a commutative subgroup such that each element of Γ has the form C_1 . Then there exists an additive subgroup $W \subset (\mathbb{C},+)$, and a group morphism $\mu: (W,+) \to (\mathbb{C}^*,\cdot)$ such that

$$\Gamma = \Gamma_{W,\mu} = \left\{ \begin{bmatrix} \mu(w)^{-2} & 0 & 0 \\ 0 & \mu(w) & w\mu(w) \\ 0 & 0 & \mu(w) \end{bmatrix} \middle| w \in W \right\}.$$

Case 1: Discreteness and Rank

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theore

Proof of the Theorem

Generalizations

Proposition

Let $\Gamma = \Gamma_{W,\mu} \subset U_+$ be a group as described in previous proposition. Γ is discrete if and only if $\operatorname{rank}(W) \leq 3$ and the morphism μ satisfies the following condition:

9 Whenever we have a sequence $\{w_k\} \in W$ of distinct elements such that $w_k \to 0$, either $\mu(w_k) \to 0$ or $\mu(w_k) \to \infty$.

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ai overview

Main Theore

Theorem

Generalization

Case	Conditions
C1.1	$\mu(W)$ has rational rotations and W is
	discrete.
C1.2	$\mu(W)$ has rational rotations and W is
	not discrete.
C1.3	$\mu(W)$ has no rational rotations but
	has irrational rotations, and $\it W$ is dis-
	crete.
C1.4	$\mu(W)$ has no rational or irrational ro-
	tations, and W is discrete.
C1.5	$\mu(W)$ has no rational rotations but
	has irrational rotations, and $\it W$ is not
	discrete.
C1.6	$\mu(W)$ has no rational or irrational ro-
	tations, and W is not discrete.

Case 1: Kulkarni Limit Set

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorem

Proof of the Theorem

Generalizations

Theorem

Let $\Gamma \subset PSL(3,\mathbb{C})$ be a commutative discrete group having the form given previous proposition, then

$$\Lambda_{\mathit{Kul}}(\Gamma) = \begin{cases} \overleftarrow{e_1}, \overrightarrow{e_2}, & \left\{ \textit{Cases C1.3 or C1.4, with condition} \right. \\ \left. \left\{ e_1 \right\} \cup \overleftarrow{e_2}, \overrightarrow{e_3}, \right. & \left. \left\{ \textit{Cases C1.5 or C1.6 no condition } \left(\mathbf{F} \right) \right. \\ \left. \left\{ \overrightarrow{e_1}, \overrightarrow{e_2} \cup \overleftarrow{e_2}, \overrightarrow{e_3}, \right. \right. & \left\{ \textit{Cases C1.5 or C1.6, with condition} \right. \\ \left. \left\{ \textit{Case C1.2} \right. \right\} \end{cases}$$

Case 2: Form

Kleiniar Groups

Introduction

Complex Kleinian Groups: Ar overview

Main Theoren

Proof of the

Generalization:

Proposition

Let $\Gamma \subset U_+$ be a commutative subgroup such that each element of Γ has the form $Diag(\alpha, \beta, \alpha^{-1}\beta^{-1})$. Then there exist two multiplicative subgroups $W_1, W_2 \subset (\mathbb{C}^*, \cdot)$ such that

$$\Gamma = \Gamma_{W_1, W_2} = \{ \text{Diag}(w_1, w_2, 1) \, | \, w_1 \in W_1, \, w_2 \in W_2 \} \,.$$

Case 2: Rank

Comple: Kleiniar Groups

Introductio

Complex Kleinian Groups: Al overview

Main Theorer

Proof of the

Generalizations

Proposition

Let $\Gamma \subset U_+$ be a diagonal discrete group such that every element has the form $\gamma = Diag(w_1, w_2, 1)$. Then $rank(\Gamma) \leq 2$.

Case 2

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Main Theoren

Proof of the Theorem

Generalization

If $\alpha^n = \beta^m$ for some $n, m \in \mathbb{Z}$:

- [D1] $L_0(\Gamma) \cup L_1(\Gamma) = \overleftarrow{e_1, e_2} \cup \{e_3\}$, if $|\alpha| > 1 > |\beta|$ or $|\alpha| < 1 < |\beta|$.
- [D2] $L_0(\Gamma) \cup L_1(\Gamma) = \overleftarrow{e_1, e_2} \cup \{e_3\}$, if $|\alpha| > |\beta| > 1$ or $|\alpha| < |\beta| < 1$.

If there are no integers n, m such that $\alpha^n = \beta^m$:

- [D3] $L_0(\Gamma) \cup L_1(\Gamma) = \{e_1, e_2, e_3\}$, if $|\alpha| > 1 > |\beta|$ or $|\alpha| < 1 < |\beta|$.
- [D4] $L_0(\Gamma) \cup L_1(\Gamma) = \{e_1, e_2, e_3\}$, if $|\alpha| > |\beta| > 1$ or $|\alpha| < |\beta| < 1$.
- [D5] $L_0(\Gamma) \cup L_1(\Gamma) = \overleftarrow{e_1, e_2} \cup \overleftarrow{e_2, e_3}$, if β is an irrational rotation.

Case 2: Kulkarni Limit Set

Complex Kleiniar Groups

Introductio

Complex Kleinian Groups: An overview

Main Theorem

Proof of th Theorem

Generalization

Theorem

Let $\Gamma_{\alpha,\beta}\subset U_+$ be a discrete group containing loxodromic elements, then

- $\bullet \quad \Lambda_{\textit{Kul}}(\Gamma) = \overleftarrow{e_1, e_2} \cup \overleftarrow{e_2, e_3} \ \textit{in Case [D5]}.$

Commutative case: Proof of the Main Theorem

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Theore

Proof of the Theorem

Generalization

If Γ is commutative, it is conjugate to a sugroup of the Lie groups C_1 or C_2 . In this setting, the region $\Omega_{\text{Kul}}(\Gamma)$ satisfies conclusions (i) and (ii) as a consequence of the previous heorems. Again, rank(Γ) \leq 4, this proves conclusion (iii).

On the other hand, $\Gamma \cong \mathbb{Z}^r$ with $r = \operatorname{rank}(\Gamma)$, and then we can write Γ as a trivial semidirect product of copies of \mathbb{Z} , thus verifying conclusion (iv).

Table of Contents

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Al overview

Theorems

Theorem

Introduction

Complex Kleinian Groups: An overview

Main Theorems

4 Proof of the Theorem

Generalizations

A First Generalization ✓

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Main Theorer

Proof of the Theorem

Generalization

Theorem

Let $\Gamma \subset PSL(3,\mathbb{C})$ be a solvable complex Kleinian group such that its Kulkarni limit set does not consist of exactly four lines in general position. Let $\Gamma_0 \subset \Gamma$ be a virtually triangularizable finite index subgroup. If Γ_0 is commutative then there exists a non-empty open region $\Omega_\Gamma \subset \mathbb{CP}^2$ such that

- \bigcirc Ω_{Γ} is the maximal open set where the action is proper and discontinuous.
- ① Ω_{Γ} is homeomorphic to one of the following regions: \mathbb{C}^2 , $\mathbb{C}^2 \setminus \{0\}$, $\mathbb{C} \times (\mathbb{H}^+ \cup \mathbb{H}^-)$ or $\mathbb{C} \times \mathbb{C}^*$.
- Up to a finite index subgroup, the group Γ leaves a full flag invariant.

Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An

Main Theorems

Proof of the

Generalizations

Thank you

Table of Contents

Complex Kleinian Groups

Appendia

A Group Acting Morphically

Complex Kleinian Groups

Appendi:

Definition

Let G be an algebraic group, V a variety, and let $\alpha: G \times V \to V$ be an action of the group G in V, $(g,x) \mapsto gx = \alpha(g,x)$. One says that G acts morphically on V if the action α satisfies the following axioms:

- $\alpha(e,x)=x$, for any $x\in V$, where $e\in G$ is the identity element.

Solvable groups are virtually triangular