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The Metric Tight-span

Hyperconvex metric spaces were defined by Aronszajn and
Panitchpakdi in 1956 1 as part of a programme to generalise
the Hahn–Banach theorem to more general metric spaces.

Hyperconvex spaces

Isbell and Dress showed that, for every metric space, there
exists an essentially unique minimal hyperconvex space into
which that space could be embedded, called the tight-span
or injective envelope.

1Extension of uniformly continuous transformations and hyperconvex
metric spaces, Pacific J. Math. 6 (1956)
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The Metric Tight-span

Dress et al. [16] coined the term T-theory for the field of discrete
mathematics devoted to the combinatorics of the tight span and
related constructions. Contributions to T-theory include

Optimal graph realisations of metrics [11,13,30].

links with tropical geometry and hyperdeterminants [9,31]

classification of finite metrics [11,40]
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This section is based on

Bryant, D., Tupper, P. F. (2012). Hyperconvexity and
tight-span theory for diversities. Advances in Mathematics,
231(6), 3172-3198.
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Diversities

Diversities are an extension of metric spaces where instead of
the non-negative function being defined on pairs of points, it is
defined on arbitrary finite sets of points.

Diversity (v1)

Let Pfin(X ) be the set of all finite subsets of a set X . A
diversity is a set X with a function δ : Pfin(X ) → R≥0

satisfying

1 δ(A) = 0 if and only if |A| ≤ 1.

2 ∀ A,B,C ∈ Pfin(X ) such that B ̸= ∅

δ(A ∪ C ) ≤ δ(A ∪ B) + δ(B ∪ C ).
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Diversities

Diversities are an extension of metric spaces where instead of
the non-negative function being defined on pairs of points, it is
defined on arbitrary finite sets of points.

Diversity (v2)

Let Pfin(X ) be the set of all finite subsets of a set X . A
diversity is a set X with a function δ : Pfin(X ) → R≥0

satisfying

1 δ(A) = 0 if and only if |A| ≤ 1.

2 ∀ A,B ∈ Pfin(X ) such that A ⊆ B, δ(A) ≤ δ(B)

3 If A ∩ B ̸= ∅ then δ(A ∪ B) ≤ δ(A) + δ(B).
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Examples of diversities

1 Diameter diversity: Let (X , d) be a metric space. For all
finite A ⊂ X let

δdiam(A) = max
a,b∈A

d(a, b).

2 ℓ1 diversity: For any finite A ⊂ Rm let

δ(A) =
m∑
i=1

max
a,b

{|ai − bi | a, b ∈ A} .
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Examples of diversities

1 Steiner diversity: Let (X , d) be a metric space. For each
finite A ⊂ X denote by δ(A) the minimum length of a
Steiner tree connecting elements in A. Steiner problem

2 Hypergraph Steiner diversity: Let H = (X ,E ) be a
hypergraph and let w : E → R≥0 be a non-negative
weight function. Given A ⊂ X let

δ(A) = min
e∈E ′

w(e),

the minimum is taken over all subsets E ′ ⊂ E such that
the sub-hypergraph induced by E ′ is connected and
includes A.
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Metrics and Diversities

Proposition

Let (X , δ1), (X , δ2) be two diversities, then

δ = δ1 + δ2 is a diversity.

δ = rδ1, for r > 0, is a diversity.

max {δ1, δ2} is a diversity.

δ =
δ

1 + δ
is a diversity.

Proposition

Let (X , δ) be a diversity, then

d(x , y) = δ({x , y})

is a metric on X .
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Tight Span of a Diversity

Tight Span of a Diversity

Let (X , δ) be a diversity. Let

PX =

f : Pfin(X ) → R

∣∣∣∣∣∣
f (∅) = 0,∑

A∈A f (A) ≥ δ
(⋃

A∈A A
)

∀ finite A ⊂ Pfin(X )


We write f ≤ g if f (A) ≤ g(A) for all A ∈ Pfin(X ). The
tight span of (X , δ) is the set of minimal elements in PX

under the partial order ≤.

If |X | = n then TX can be regarded as a subset of R2n−1.



Lattice
Diversities

The Metric
Tight-span

Classical
Diversities

Lattice
Diversities

Lattices

Lattice Diversities

The tight-span of a
lattice diversity

The obstacles for a
T -theory

An example

If X = {1, 2, 3}, the tight-span is

depending on whether 2d123 ≤ d12 + d23 + d13 or
2d123 > d12 + d23 + d13.
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The tight-span is a diversity

Theorem

Let (X , δ) be a diversity, let δT : Pfin(TX ) → R be the function
defined by δT (∅) = 0 and

δT (F ) = sup
A⊂Pfin(X )

{
δ

(⋃
A∈A

A

)
−
∑
A∈A

inf
f ∈F

f (A)

}
for all F ∈ Pfin(TX ). Then (TX , δT ) is a diversity.



Lattice
Diversities

The Metric
Tight-span

Classical
Diversities

Lattice
Diversities

Lattices

Lattice Diversities

The tight-span of a
lattice diversity

The obstacles for a
T -theory

Diversity embedding

Diversity embedding

Let (Y1, δ1) and (Y2, δ2) be two diversities. A map π :
Y1 → Y2 is an embedding if

1 π is injective.

2 ∀A ⊂ Pfin(Y1) we have δ1(A) = δ2(π(A)).

An isomorphism is a surjective embedding between two
diversities.
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Embedding a diversity into its tight-span

Let (X , δ) be a diversity. For each x ∈ X define the
function hx : Pfin(X ) → R≥0 by

hx(A) = δ (A ∪ {x})

for all A ∈ Pfin(X ).

For all x ∈ X , hx ∈ TX .

Let κ : X → TX given by κ(x) = hx .

Theorem

The map κ is an embedding from (X , δ) into (TX , δT ).
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Injectivity

Injective Diversity

A diversity (X , δ) is injective if it satisfies: given any pair
of diversities (Y1, δ1), (Y2, δ2), an embedding π : Y1 →
Y2, and a non-expansive map ϕ : Y1 → X there is a non-
expansive map ψ : Y2 → X such that ϕ = ψ ◦ π.
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Hyperconvexity

Hyperconvex Diversity

A diversity (X , δ) is hyperconvex if ∀ r : Pfin(X ) → X
such that

δ

(⋃
A∈A

A

)
≤
∑
A∈A

r(A).

for all A ∈ Pfin(X ) there is z ∈ X such that
δ ({z} ∪ Y ) ≤ r(Y ) for all Y ∈ Pfin(X ).
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Main results of the classic case

Theorem

A diversity (X , δ) is injective if and only if it is hyperconvex.

Theorem

For any diversity (X , δ), the tight-span (TX , δT ) is hyperconvex.
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Connection with the metric case

(X , d)
tight-span−→ (T d

X , dT )
δ = diam

y yδ = diam

(X , δ)
tight-span−→ (TX , δT )
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POSET

POSET

Let P ̸= ∅ be a set and let ≤ be a relation satisfying for
all a, b, c ∈ P

1 a ≤ a

2 a ≤ b and b ≤ c implies a ≤ c,

3 a ≤ b and b ≤ a implies a = b.

We say that (P,≤) is a POSET.

If there is an element x ∈ P such that x ≤ y for all y ∈ P,
we let x = 0 and say that P has a 0.



Lattice
Diversities

The Metric
Tight-span

Classical
Diversities

Lattice
Diversities

Lattices

Lattice Diversities

The tight-span of a
lattice diversity

The obstacles for a
T -theory

Examples of POSETS

(R,≤)

The power set of any non-empty set X , (2X ,⊂)

The set N equipped with the relation of divisibility, (N, |).
For any set X and any POSET P, the set of functions
f : X → P with the usual order.
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Lattice: as a POSET

Lattice

A lattice is a non-empty poset (L,≤) in which every two
elements have a unique supremum (also called a least
upper bound) and a unique infimum (also called a greatest
lower bound).

There are two binary operations defined on L called meet (des-
ignated by ∧) and join (designated by ∨). They are given by the
infinum and supremum respectively.

Lattices, being posets, may have a 0 element, which satisfies
0 ∧ x = 0 and 0 ∨ x = x for all x ∈ L.
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Lattice: as a POSET

Lattice

A lattice is a non-empty poset (L,≤) in which every two
elements have a unique supremum (also called a least
upper bound) and a unique infimum (also called a greatest
lower bound).

There are two binary operations defined on L called meet (des-
ignated by ∧) and join (designated by ∨). They are given by the
infinum and supremum respectively.

Lattices, being posets, may have a 0 element, which satisfies
0 ∧ x = 0 and 0 ∨ x = x for all x ∈ L.
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Lattice: as a POSET

Lattice

A lattice is a non-empty poset (L,≤) in which every two
elements have a unique supremum (also called a least
upper bound) and a unique infimum (also called a greatest
lower bound).

There are two binary operations defined on L called meet (des-
ignated by ∧) and join (designated by ∨). They are given by the
infinum and supremum respectively.

Lattices, being posets, may have a 0 element, which satisfies
0 ∧ x = 0 and 0 ∨ x = x for all x ∈ L.
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Examples of Lattices

(N,≤). The supremum is given by the maximum, and the
infimum by the mininum.

For any set X , (Pfin(X ),⊆). The supremum is given by the
union, and the infimum by the intersection.

(N, |). The supremum is given by the lcm, and the infimum
by the GCD.
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Lattice: As algebraic structure

Lattice

A lattice is an algebraic structure (L,∨,∧) consisting of
a set L and two binary, commutative and associative op-
erations ∨ and ∧, called join and meet, satisfying the
absorption laws:

a ∨ (a ∧ b) = a

a ∧ (a ∨ b) = a

Lattices, may have a 0 element, which is the identitity of
∨, that is 0 ∨ x = x for all x ∈ L.

For B ⊆ L we let
∨
B denote

∨
b∈B b; likewise for

∧
B.
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Examples of Lattices

(N,min,max).

For any set X , the collection of all finite subsets of X ,
(Pfin(X ),∪,∩).

(N, lcm,GCD).
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More examples of Lattices: Hasse Diagram



Lattice
Diversities

The Metric
Tight-span

Classical
Diversities

Lattice
Diversities

Lattices

Lattice Diversities

The tight-span of a
lattice diversity

The obstacles for a
T -theory

J(L) and A(L)

Let L be a lattice.

An element a ∈ L is said to be join irreducible if a ̸= 0 and
a = b ∨ c implies a = b or a = c .

We denote by J(L) the set of all join irreducible elements.

For a, b ∈ L, we say that b covers a if a < b and

{c | a < c < b} = ∅.

If L has a least element 0, then the upper covers of 0 are
called the atoms of L, and we denote them by A(L). Note
that

A(L) ⊆ J(L).
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Lattice Diversity

Lattice Diversity (v2)

Let L be a lattice with 0 and δ : L → R≥0pos. (L, δ) is a
lattice diversity if

1 δ(a) = 0 if and only if a ∈ A(L) or a = 0.

2 a ≤ b implies δ(a) ≤ δ(b) (monotonicity),

3 a ∧ b ̸= 0 implies δ(a ∨ b) ≤ δ(a) + δ(b)
(subadditivity on non-disjoint elements)

The triangle inequality does not imply monotonicity and
subadditivity on non-disjoint elements. Example
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Lattice Diversity

Lattice Diversity (v2)

Let L be a lattice with 0 and δ : L → R≥0pos. (L, δ) is a
lattice diversity if

1 δ(a) = 0 if and only if a ∈ A(L) or a = 0.

2 a ≤ b implies δ(a) ≤ δ(b) (monotonicity),

3 a ∧ b ̸= 0 implies δ(a ∨ b) ≤ δ(a) + δ(b)
(subadditivity on non-disjoint elements)

The triangle inequality does not imply monotonicity and
subadditivity on non-disjoint elements. Example
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Examples

The classical case: If L = Pfin(X ), then we recover the
original definition of classical diversities. In this case, the
role of X is played by A(L) = J(L).

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

X
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Examples

Divisibility diversity: (N, lcm,GCD). The least element of
L is 1 and A(L) is the set of prime numbers.

1

2 3

6 9

18

Let Ω(n) be the Omega function which counts the total
number of prime factors of n, counting multiplicity. Con-
sider the function

δ(n) =

{
Ω(n), n is not prime,

0, n otherwise.

(L, δ) is a diversity.
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Basic properties of lattice diversities

Proposition

Let (L, δ) be a lattice diversity and let x1, ..., xn ∈ L such that
xi ∧ xi+1 ̸= 0 for all i = 1, . . . , n − 1. Then

δ(x1 ∨ ... ∨ xn) ≤ δ(x1) + ...+ δ(xn).

Proposition

For a lattice diversity (L, δ), the diversity function δ satisfies
the triangle inequality:

δ(a ∨ c) ≤ δ(a ∨ b) + δ(b ∨ c),

for all a, b, c ∈ L with b ̸= 0.
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Basic properties of lattice diversities

Proposition

For a lattice diversity (L, δ), define the function
dδ : A(L)× A(L) → R≥0 by

dδ(a, b) = δ(a ∨ b)

then (A(L), dδ) is a metric space.

Proposition

Let δ be a diversity on a lattice L, and define dn,δ : X
n → ℜ+

by
dn,δ(a1, ..., an) = δ (a1 ∨ ... ∨ an) .

Then dn,δ is an n-way distance on A(L).
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Diversities for particular classes of lattices

Proposition

Let L be any lattice with a 0 and let δ : L → R≥0 be

δ(a) =

{
0, a ∈ A(L) ∪ {0},
1, otherwise.

Then (L, δ) is a lattice diversity.
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Diversities for particular classes of lattices

Proposition

Let L be a modular lattice sectionally of finite height and let
δh : L → R≥0 be

δh(a) =

{
0, a = 0,

h(a)− 1, otherwise.

Then (L, δh) is a strictly monotone lattice diversity.

Modular lattices Lattices sectionally of finite height
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Diversities for particular classes of lattices

Proposition

Let L be a lattice with a 0 and let v : L → R≥0 be a positive
sub-valuation with v(0) = 0. Let δv : L → R≥0 be given by

δv (a) =

{
0, a ∈ A(L),

v(a), otherwise.

Then, (L, δv ) is a strictly monotone lattice diversity.

Valuation on lattices
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Finite Distributive Lattice Diversities

Every lattice diversity on a finite distributive lattice is isomorphic
to a restriction of a classical diversity to a lattice of finite lower
subsets of a set.

Proposition

Let (L, δ) be a lattice diversity where L is finite distributive lat-
tice. For A ⊆ J(L), we define

δ̂(A) =

{
δ (
∨
A) , if |A| ≥ 2

0, otherwise.

Then (J(L), δ̂) is a classical diversity whose restriction to
O (J(L)) is isomorphic to (L, δ).

O(P) Distributive Lattices Birkhoff’s representation theorem
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The tight-span of a lattice diversity

The tight-span of a lattice diversity

Let (L, δ) be a lattice diversity. Let PL denote the set of
all functions f : L → R≥0 satisfying∑

b∈B
f (b) ≥ δ

(∨
B
)
,

for any finite subset B ∈ Pfin(L). Write f ⪯ g if f (a) ≤
g(a) ∀a ∈ L. The tight-span of (L, δ) is the set TL ⊆ PL

of functions that are minimal under ⪯.
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Properties of TL

Proposition

Suppose that f ∈ TL. Then

1 f (a) ≥ δ(a) for any a ∈ L.

2 Let a, b ∈ L such that a ≤ b then f (a) ≤ f (b). That is, f
is monotone.

3 f (a ∨ c) ≤ δ(a ∨ b) + f (b ∨ c) for any a, b, c ∈ L, b ̸= 0.

4 f (a ∨ b) ≤ f (a) + f (b) for any a, b ∈ L. That is, f is
sub-additive.
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Embedding a lattice diversity into its tight span

For x ∈ L, let hx : L → R≥0 be the function given by

hx(a) = δ (x ∨ a) .

We define the map κ given by κ(x) = hx .

Theorem

Let (L, δ) be a lattice diversity. The function κ : (L,≤) →
(PL ∪ {δ},⪯) defined above is an order-preserving map. Also,

1 κ(0) = δ.

2 κ(a) ∈ PL if a ̸= 0.

3 κ(a) ∈ TL if a ∈ A(L).

4 κ restricted to A(L) ∪ {0} is injective.

5 If δ is strictly monotone, then κ is injective on L.
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Examples

If (X , δ) is a classical diversity, then the lattice diversity
(Pfin(X ), δ) has the same tight span as (X , δ) does in the
classical theory of diversities.

Let L = M3

Any diversity is determined by α = δ(a4) > 0.
Details
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Examples

Let L = N5

Any diversity on N5 is determined by the two values

α = δ(a3), β = δ(a4),

We have

v1 = (0, 0, β, α, β) = κ(a1)

v2 = (0, β, 0, β, β) = κ(a2)

p = (0, α, β − α, α, β)
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The obstacles for a T -theory

Though many aspects of the theory of classical diversities
carry over directly to lattice diversities, we were not able
to develop much of the theory of tight spans in this new
setting.

In particular, we were not able to find a natural embedding
of a lattice diversity into its tight span, or any object asso-
ciated with it, such as PL ∪ {δ}.
The natural mapping κ from a lattice diversity to the set of
real-valued functions on the lattice is not a lattice homo-
morphism.

This motivates looking for other ways of defining the tight
span of a lattice diversity.
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Category Theory

If we view a metric space as an object in the concrete cat-
egory Met of metric spaces with non-expansive mappings,
then the tight span of a metric space is its injective hull,
which is the unique essential embedding of the metric space
into an injective object.

The analogous result is true for classical diversities in the
category Div.

In general, for any concrete category (which we specify by
its objects and morphisms) if all objects have injective hulls
then the injective hulls are a good candidate for an analogue
of the tight span.
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The Category of Lattice Diversities

We define a category where our objects are lattice diversities
and define morphisms to be maps f : (L1, δ1) → (L2, δ2)
between lattices that satisfy

f is a lattice homomorphism,
δ2(f (a)) ≤ δ1(a), for all a ∈ L.

Now a minimal requirement for objects in this category to
have injective hulls is that each object be embeddable into
some injective object.

The injective objects of this category are the single point
lattices with the trivial diversity on them.

This implies that any lattice diversity with more than two
points cannot have an injective hull.
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Alternatives

Seek a meet-free axiomatization of lattice diversities and
take morphisms to be join-homomorphisms, since semilat-
tices have a richer set of injective objects.

Consider restricted classes of lattice diversities, such dis-
tributive lattice diversities. The injective objects in the
category of distributive lattices are the complete Boolean
lattices. However, Boolean lattices are isomorphic to the
subalgebra of a power set by Stone’s representation theo-
rem. Thus, recapitulating that of the tight span theory for
diversities
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Hyperconvex Spaces

Hyperconvex Space

A metric space X is said to be hyperconvex if it is convex
and satisfies

Any two points x and y can be connected by the
isometric image of a line segment of length equal to
the distance between the points.

If F is any familiy of closed balls with non-empty
pairwise intersection, then there exists a point
common to all the balls in F .

Examples: R, R2 with the Manhattan distance, R-trees.
Metric Tight-Span
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Steiner tree problem

Given N points in the plane, the goal is to connect them
by lines of minimum total length in such a way that any
two points may be interconnected by line segments either
directly or via other points and line segments.

v1 v2

v3
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Steiner tree problem

Given N points in the plane, the goal is to connect them
by lines of minimum total length in such a way that any
two points may be interconnected by line segments either
directly or via other points and line segments.

v1 v2

v3

s1

Examples of diversities
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Non-equivalency of axioms

0

a1

a2

a3

δ(0) = δ(a1) = 0

δ(a2) = 2

δ(a3) = 1

δ satisfies condition (1) and the triangle
inequality (δ(a ∨ b) + δ(b ∨ c) ≤ δ(a ∨ c)
for all a, b, c ∈ L) but not monotonicity.

Lattice Diversity
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Modular Lattices

Modular Lattice

A lattice (L,∨,∧) which satisfies the modular law

a ∧ (b ∨ c) = (a ∧ b) ∨ c

for any a, b, c ∈ L such that c ≤ a is called a modular
lattice.

Examples:

(Pfin(X ),∪,∩) is modular.
N5 is not modular

a1 ∨ (a2 ∧ a3) = a1 ∨ 0 = a1

(a1 ∨ a2) ∧ a3 = a4 ∨ a3 = a3

Lattice Diversity
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Finite Height Lattices

Height of a lattice

A lattice L is said to be of finite height iff there is a finite
upper bound to the length of chains in L. The least such
upper bound is called the height of L. A lattice L is said
to be sectionally of finite height iff L has a least element
0, and for every a ∈ L, the interval [0, a] is of finite height.
In this case, the height of [0, a] will be denoted by h(a)
and called the height of a.

Lattice Diversity
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Valuation on Lattices

A valuation on a lattice L is a function v : L → R≥0 such that

v(a ∧ b) + v(a ∨ b) = v(a) + v(b).

A sub-valuation is a function v : L → R≥0 such that

v(a ∧ b) + v(a ∨ b) ≤ v(a) + v(b).

A valuation (resp. sub-valuation) is positive if v(a) < v(b)
whenever a < b.

Examples:

The height function is a positive valuation on modular lat-
tices of sectionally finite height.

The function log(x) on the lattice of divisibility of positive
integers is a positive valuation.

Lattice Diversity
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Down-sets

Down-set

Let (P,≤) be a poset, we say that Q ⊆ P is a down-set
if, whenever x ∈ Q, y ∈ P and y ≤ x , we have y ∈ Q.
The family of all down-sets of P is denoted O(P), it is a
poset under the inclusion order.

Distributive Lattice Diversity
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Distributive Lattices

Distributive Lattices

A lattice (L,∨,∧) which satisfies the distributive law

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

for any a, b, c ∈ L is called a distributive lattice.

Examples:

Every distributive lattice is modular.
(Pfin(X ),∪,∩) is distributive.
M3 is not distributive

a1 ∧ (a2 ∧ a3) = a1 ∨ a4 = a1

(a1 ∧ a2) ∨ (a1 ∧ a3) = 0 ∨ 0 = 0
Distributive Lattice Diversity
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Birkhoff’s Representation Theorem

Theorem

Let L be a finite distributive lattice. Then the map

η(a) = {x ∈ J(L) | x ≤ a} = J(L)∩ ↓ a,

is an isomorphism of L onto the lattice of down-sets O (J(L)).
The inverse of the isomorphism is given by

η−1(A) =
∨

A,

for A ⊆ J(L).

Distributive Lattice Diversity
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Details M3

Any diversity on M3 is determined by the value α = δ(a4) > 0,
since we have δ(0) = δ(a1) = δ(a2) = δ(a3) = 0. Let f :
L → R≥0. f is determined by the values fi = f (ai ) and f0 = 0.
f ∈ TL iff

f0, f1, f2, f3 ≥ 0, f4 ≥ α, f1 + f2 ≥ α,
f1 + f3 ≥ α, f2 + f3 ≥ α,

and for each fi at least one of the inequalities it is in holds as an
equality.

TL ={(0, f1, α− f1, α− f1, α) | 0 ≤ f1 ≤ α/2}∪
{(0, α− f2, f2, α− f2, α) | 0 ≤ f2 ≤ α/2}∪
{(0, α− f3, α− f3, f3, α) | 0 ≤ f3 ≤ α/2}

Back to examples


	The Metric Tight-span
	Classical Diversities
	Lattice Diversities
	Lattices
	Lattice Diversities
	The tight-span of a lattice diversity
	The obstacles for a T-theory

	Appendix
	Appendix


