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Introduction

Kleinian groups are discrete subgroups of PSL (2, C), the group
of biholomorphic automorphisms of the complex projective line
CP! = S?, acting properly and discontinuously on a non-empty
region of CP*.
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Introduction

Kleinian groups are discrete subgroups of PSL (2, C), the group
of biholomorphic automorphisms of the complex projective line
CP! = S?, acting properly and discontinuously on a non-empty
region of CP!.

Kleinian groups have been studied since the end of the 19th
century by Fuchs, Klein, Poincaré, and many others. Kleinian
groups have played a major role in several fields of mathematics,
such as Riemann surfaces and Teichmiiller theory, automorphic
forms, holomorphic dynamics, conformal and hyperbolic geome-
try, etc.



Introduction

The set of accumulation points of orbits of a Kleinian group is
called the limit set of the group.
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Elementary Kleinian Groups

The set of accumulation points of orbits of a Kleinian group is
called the limit set of the group.

Elementary groups are discrete subgroups of PSL (2, C) such that
the limit set is a finite set. In other words, it is empty or it
consists of 1 or 2 points.
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Elementary Kleinian Groups

The set of accumulation points of orbits of a Kleinian group is
called the limit set of the group.

Introduction
T Elementary groups are discrete subgroups of PSL (2, C) such that

Sroups: An the limit set is a finite set. In other words, it is empty or it
consists of 1 or 2 points.

Proof of the
Theorem

Generalizations

(a) elliptic (b) hyperbolic  (¢) loxodromic (d) parabolic
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Discrete subgroups of
isometries of hyperbolic
3-space  H3 (discrete
groups of  conformal

automorphisms of the

sphere at infinity)

Conformal Kleinian
Groups

I

Generalize to higher dimensions

Discrete groups of holo-
morphic transformations
of the complex projective
line CP! = S? acting with
nonempty region of dis-
continuity.

Complex Kleinian Groups
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Preliminaries

The complex projective plane CP? is defined as

Introduction

G CF? = (C°\ {0}) /C,
G:)I:;r:] An

overview where C* acts by the usual scalar multiplication. Let

Proof of the
Theorem

.3
Generalizations [] ’ C \ {0} - (C]P
be the quotient map. We denote the projectivization of the
point x = (x1,x2,x3) € C3 by [x] = [x1 : x2 : x3]. We denote by
e1, &, e3 the projectivization of the canonical base of C3.
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Complex
Kleinian
Groups: An
overview

Let GL(3,C) C M3 (C) be the subgroup of matrices with de-

terminant not equal to 0. The group of biholomorphic automor-
phisms of CP? is given by

PSL(3,C) := GL(3,C) /{scalar matrices}.
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Preliminaries

Let GL(3,C) € M3 (C) be the subgroup of matrices with de-
terminant not equal to 0. The group of biholomorphic automor-
phisms of CP? is given by

PSL(3,C) := GL(3,C) /{scalar matrices}.

We denote the upper triangular subgroup of PSL (3,C) by

a1 d12 a3
U+ = 0 ax axs ajiaxasz = 1, aj € C
0 0 a3
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Proof of the
Theorem

Generalizations

Preliminaries

As in the case of automorphisms of CP?, we classify the elements
of PSL (3, C) in three classes: elliptic, parabolic and loxodromic.
However, unlike the classical case, there are several subclasses
in each case. We now give a quick summary of the subclasses
of elements we will be using.
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Classification of elements of PSL (3, C)

Introduction

B An element g € PSL (3, C) is said to be:
Kleinian

EAn L o Elliptic if it has a diagonalizable lift in SL (3, C) such that
D every eigenvalue has norm 1.

- @ Parabolic if it has a non-diagonalizable lift in SL (3, C)
Generalizations SUCh that eVeI’y eigenvalue has norm 1

overview
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Classification of elements of PSL (3, C)

Ea
‘F“

@ Loxodromic if it has a lift in SL (3, C) with an eigenvalue
of norm distinct of 1. Furthermore, we say that g is:

e Loxo-parabolic
0
0
)\72

A
h=| o LA # 1
0

[

e A complex homothety, h = Diag ()\, )\7)\*2), |A] # 1.

o A rational (resp. irrational) screw, h = Diag (A1, A2, A3),
M| = [Aa] # [As] and A At = €2 with 6 € Q (resp.
0 € R\ Q).

e Strongly loxodromic, h = Diag (A1, A2, A3), where
{|A1], |A2l, [A3]} are pairwise different.



Kernel of a Group

Consider a subgroup I € PSL (3, C) acting on CPP? with a global
fixed point p € CP2. Let £ C CP?\ {p} be a projective complex
line. We define the projection m = mp, : CP? — / given by
7(x) = €N p,%. This function is holomorphic, and it determines
the group homomorphism

M=, :PSL(3,C) — Bihol(¢) = PSL (2, C)
given by M(g)(x) = m(g(x)) for g € I'. We write Ker(I') instead

of Ker(IMM) NT.
The control group of T is M(I).



Complex
Kleinian
Groups: An
overview

How can we define elementary complex Kleinian groups?

@ Discrete subgroups of PSL (3, C) such that its Kulkarni
limit set contains a finite number of lines.
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Elementary Complex Kleinian Group

How can we define elementary complex Kleinian groups?
@ Discrete subgroups of PSL (3, C) such that its Kulkarni
limit set contains a finite number of lines.
e Discrete subgroups of PSL (3, C) such that its Kulkarni
limit set contains a finite number of lines in general
position.



Elementary Complex Kleinian Group

How can we define elementary complex Kleinian groups?
@ Discrete subgroups of PSL (3, C) such that its Kulkarni
limit set contains a finite number of lines.

e Discrete subgroups of PSL (3, C) such that its Kulkarni
limit set contains a finite number of lines in general
position.

@ Discrete subgroups of PSL (3, C) with reducible action.



Elementary Complex Kleinian Group

How can we define elementary complex Kleinian groups?

@ Discrete subgroups of PSL (3, C) such that its Kulkarni
limit set contains a finite number of lines.

e Discrete subgroups of PSL (3, C) such that its Kulkarni
limit set contains a finite number of lines in general
position.

@ Discrete subgroups of PSL (3, C) with reducible action.
@ Discrete solvable subgroups of PSL (3, C).
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e If g, h € G, we define the commutator as [g, h] = g~ 1h~!gh.
@ We define the commutator subgroup as

[G,G]={lg.h]|g.he G}
@ The derived series of G is given by
cO — ¢ gli+) — {G("),G(")} ,
@ We say that G is solvable if, for some n > 0, we have

G(" = {id}.
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e If g, h € G, we define the commutator as [g, h] = g~ 1h~igh
@ We define the commutator subgroup as

Complex
Kleinian
Groups: An

| [G,G]={[g,hl|g.heG}.
@ The derived series of G is given by

GO =g, GUtD = {G("XGU) .

> We say that G is solvable if, for some n > 0, we have

G — {id}.
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@ We define the commutator subgroup as

Complex
Kleinian
Groups: An

: [G,G]={[g,h]|g,heG}.

@ The derived series of G is given by

GO =g, GMD:FQGM_

We say that G is
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e If g, h € G, we define the commutator as [g, h] = g~ 1h~igh

if, for some n > 0, we have
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e If g, h € G, we define the commutator as [g, h] = g~ 1h~igh
@ We define the commutator subgroup as

[G,G] = {lg,h]|g,heG}.

@ The derived series of G is given by

GO =G, i+ = [G(f), G(f)] :

o We say that G is solvable if, for some n > 0, we have
G(M = {id}.
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@ The infinite dihedral group is solvable
Dihoo = (Roteo, z +— —2).

@ Any triangular group is solvable, with solvability length at
most 3.

@ The special orthogonal group is not solvable,

(P

@ Cyclic groups, abelian groups.

|a]2 + |b|? = 1} c PSL(2,C)
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Complex
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Groups: An
overview

o The infinite dihedral group is solvable
Dihoo = (Roteo, z +— —2).

@ Any triangular group is solvable, with solvability length at
most 3.

@ The special orthogonal group is not solvable,

e+

@ Cyclic groups, abelian groups.

|a]2 + |b|? = 1} c PSL(2,C)
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o The infinite dihedral group is solvable
Dihoo = (Roteo, z +— —2).

@ Any triangular group is solvable, with solvability length at
most 3.

@ The special orthogonal group is not solvable,

o]

Cyclic groups, abelian groups.

|a]2 + |b|* = 1} c PSL(2,C)
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Solvable groups: Examples

o The infinite dihedral group is solvable

Introduction

Dihoo = (Roteo, z +— —2).

Complex
Kleinian
Groups: An

- @ Any triangular group is solvable, with solvability length at
Proof of the most 3

Theorem

@ The special orthogonal group is not solvable,

o]

@ Cyclic groups, abelian groups.

Generalizations

|a]2 + |b|* = 1} c PSL(2,C)
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The Kulkarni Limit Set

From now on, let ' C PSL (3, C) be a discrete subgroup acting
on CP2.
Definition
o Let Lo(I") be the closure of the set of points in CP" with
infinite isotropy group.
o Let L1(I) be the closure of the set of cluster points of orbits
of points in CP" \ Lo(I).
o Let Lp(I) be the closure of the set of cluster points of com-
pact sets of CP" \ (Lo(I') U L1(I)).

/\Ku/(r) = Lo(r) U Ll(r) U L2(F), QK,,,(F) = CP" \ /\Ku/(r). )




Complex
Kleinian
Groups: An
overview

The Kulkarni limit set Akyi(F) in CP? is made up of points and
complex projective lines. = oo 0 or 0 e
general position.

The equicontinuity region for I', denoted Eq(I"), is defined to be
the set of points z € CP" for which there is an open neighbor-
hood U of z such that I restricted to U is a normal family.

I" acts properly and discontinuously on Eq(I"), and

Eq(l) € Qku(l).
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The Kulkarni limit set Akyi(F) in CP? is made up of points and
complex projective lines. It contains 1, 2, 3, 4 or oo lines in
general position.

The for I', denoted Eq(I"), is defined to be
the set of points z € CP" for which there is an open neighbor-
hood U of z such that I restricted to U is a normal family.

[ acts properly and discontinuously on Eq(I"), and

Eq(l") € Qkul(l).
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Limit sets for complex Kleinian groups

The Kulkarni limit set Ak (") in CP? is made up of points and
complex projective lines. It contains 1, 2, 3, 4 or oo lines in
general position.

The equicontinuity region for I', denoted Eq("), is defined to be
the set of points z € CP" for which there is an open neighbor-
hood U of z such that I restricted to U is a normal family.



Limit sets for complex Kleinian groups

The Kulkarni limit set Ak (") in CP? is made up of points and
complex projective lines. It contains 1, 2, 3, 4 or oo lines in
general position.

The equicontinuity region for I', denoted Eq("), is defined to be
the set of points z € CP" for which there is an open neighbor-
hood U of z such that I restricted to U is a normal family.

I acts properly and discontinuously on Eq(I'), and

Eq(F) C QKL”(F).
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Irreducible v

Reducible action
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Action on CP?

Irreducible v

Reducible action Solvable
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Action on CP?

Irreducible v
Solvable

Non-solvable

Reducible action
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Action on CP?

Irreducible v
Solvable
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Main Result

Let T C PSL(3,C) be a triangularizable complex Kleinian group
such that its Kulkarni limit set does not consist of exactly four
lines in general position. Then there exists a non-empty open
region Qr C CP? such that

@ Qr is the maximal open set where the action is proper and
discontinuous.

@ Qr is homeomorphic to one of the following regions: C?,
C2\ {0}, C x (Ht UH"™) or C x C*.
@ T is finitely generated and rank(l') < 4.




Main Result

Let T C PSL(3,C) be a triangularizable complex Kleinian group
such that its Kulkarni limit set does not consist of exactly four
lines in general position. Then

@ The group I can be written as

F=Tp > (n1) X oo X (Mm) X (71) X oo X (7n)

/

loxo-parabolic strongly loxodromic

where ', is the subgroup of I consisting of all the
parabolic elements of T.

@ The group I leaves a full flag invariant.




Main Result

Let I € PSL(3,C) be a solvable complex Kleinian group such
that its Kulkarni limit set does not consist of exactly four lines
in general position. Then

@ The group I can be written as

F=Tp > (n1) X oo X (Mm) X (71) X oo X (7n)

/

loxo-parabolic strongly loxodromic

where ', is the subgroup of I consisting of all the
parabolic elements of T.

@ The group I leaves a full flag invariant.
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The parabolic part is described in

Barrera, W., Cano, A., Navarrete, J. P., & Seade, J. (2022). Discrete
parabolic groups in PSL (3, C). Linear Algebra and its Applications, 653,
430-500.
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Borel fixed point theorem: Let G be a connected solvable group

acting morphically on a non-empty complete variety V. Then G
has a fixed point in V.

Applying this theorem to the Zariski closure of I' yields that I is
virtually triangularizable. Namely, ' has a finite index subgroup
such that, up to conjugation, is upper triangular.

This proves (v).
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(v) Invariant Flag

Borel fixed point theorem: Let G be a connected solvable group
acting morphically on a non-empty complete variety V. Then G
has a fixed point in V.

Applying this theorem to the Zariski closure of I yields that " is
virtually triangularizable. Namely, I has a finite index subgroup
such that, up to conjugation, is upper triangular.

This proves (v).
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Restrictions on the Elements of a
Non-commutative Group

Proposition

Let I C U; be a discrete subgroup. Let v € [ be an irrational
screw v = Diag(f2e %m0 3e*™i0 3e2710)  for some |B| # 1
and 0 € R\ Q, then I' is commutative.

Proposition

Let € Uy be a non-commutative, torsion-free discrete sub-
group, then I' cannot contain a type | complex homothety.




@ The Core of a Group

The core of I is an important purely parabolic subgroup of a
complex Kleinian group I which determines the dynamics of T.

Proposition

The elements of Core(I") have the form

Ex,y =

O O =
O~ X
= O X<

for some x,y € C.




The Core of a Group

It is straightforward to verify that

Akui (Core(T)) = U e, [0:—y:x

8x,y€Core(IN)

We denote this pencil of lines by C(I') = Ay (Core(T)).

Proposition

Let ' C Uy be a discrete group, then every element of ' leaves
C(T) invariant.




" is not commutative

" is commutative
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Decomposition of Non-Commutative Triangular
Groups

Let T C Uy be a non-commutative, torsion free, complex
Kleinian group, then

= Core(l') »x (&1) X ... X (&) %
X AM) X oo X (M) X (1) X oo X (Yn).

Furthermore, if k = rank(Core(T')) then k +r + m+n < 4.




Parabolic

«O>» «Fr «=»

« =)

Loxodromic
3% 1 x vy a Xy a x y
0 01 z 0 8 =z 0 8 z
1 0 01 0 0 0 0 ~
z#0 a#Ffp,z#0 B#
Loxo-parabolic Strongly loxodr
A\ Ker(l)  Ker(A23)\ A



Morphisms A

Let A2, A2z, A1z (Us, ) — (C*,-) be the group morphisms
Introduction given by
Sl Mz ([aj]) = annag,

Grou;.)sﬁAn )\23 ([aU]) = a22a3_31
M3 ([eg]) = aniags

Proof of the
Theorem

Strategy of the proof:
@ Decomposition of I in terms of Ker(\23).
@ Decompose Ker(A23) in terms of Ker(A12).
@ Decompose A = Ker(A12) N Ker(A23) in terms of Ker(I)

Generalizations
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Rank

Theorem (Bestvina, Kapovich, Kleiner)

Let I be a group acting properly and discontinuously on a con-
tractible manifold of dimension m, then obdim(I') < m.




Theorem (Bestvina, Kapovich, Kleiner)

Let I be a group acting properly and discontinuously on a con-
tractible manifold of dimension m, then obdim(I') < m.

In our case, it can be re-stated as:

Let T C U; be a non-commutative, torsion free, complex
Kleinian group acting properly and discontinuously on a sim-
ply connected domain Q C CP?, then k +r+m+ n < 4.




Theorem (Bestvina, Kapovich, Kleiner)

Let I be a group acting properly and discontinuously on a con-
tractible manifold of dimension m, then obdim(I") < m.

In our case, it can be re-stated as:

Let T C U; be a non-commutative, torsion free, complex
Kleinian group acting properly and discontinuously on a sim-
ply connected domain Q C CP?, then k +r+m+ n < 4.

Find a simply connected domain Q C CP? where I acts prop-
erly and discontinuously, and then apply the theorem. In some
cases, we write the explicit decomposition of I and verify that
rank(l") < 4.



Some cases

Denote ¥ = M(I). If X is discrete and Ker(I) is finite. If
INX)] # 2, let

o= U &z \{a}

zeQ(X)

We know that I acts properly and discontinuously on Q. If
IA(X)] = 0,1 or oo, then each connected component of Q is
simply connected, since they are respectively homeomorphic to
CP?, C2 or C x H. By the theorem, it follows k+r+m+n < 4



For non-commutative I, using these ideas, we have constructed
an open subset Qr C CP? such that the orbits of every compact
set K C Qr accumulate on CP? \ Qr. Thus we can define a
limit set for the action of I by Ar := CP?\ Qr. This limit set
describes the dynamics of I, and the open region Qr satisfies (i)
and (ii).

Also, we prove that rank(l") < 4. This verifies (iii).



Commutative groups

Theorem (Barrera, Cano, Navarrete, Seade)

Let I C Uy be a commutative group, then I is conjugate in
PSL (3,C) to a subgroup of one of the following Abelian Lie

Groups:
a? 0 0
G = 0 a aecCpeC
0 0 «
°

C, = {Diag (o, 8,0 'p7Y) |, B € C*}.

1 0 6
G = 01 vy ||B8reC
001




Commutative groups

Theorem (Barrera, Cano, Navarrete, Seade)

1 B
Cy = 0 1 B,’)’EC 3
0 01

1 B
Cs = 0 1 B,yeCh.
00

o

_ T 2




Case 1: Form

Proposition

Let I C Uy be a commutative subgroup such that each
element of I has the form C;. Then there exists an additive
subgroup W C (C,+), and a group morphism

w: (W,+) — (C*,-) such that

pw)=2 0 0
M=Tw,= 0 p(w) wu(w) | |lweW
0 0 u(w)




Case 1: Discreteness and Rank

Proposition

LetT' =Tw , C Uy be a group as described in previous proposi-
tion. T is discrete if and only if rank(W) < 3 and the morphism
1 satisfies the following condition:

@ Whenever we have a sequence {wy} € W of distinct
elements such that wy — 0, either u(wy) — 0 or
p(wg) — 0.




Case

Conditions

C11

C1.2

C13

Cl4

Cl5

C1.6

(W) has rational rotations and W is
discrete.

(W) has rational rotations and W is
not discrete.

u(W) has no rational rotations but
has irrational rotations, and W is dis-
crete.

(W) has no rational or irrational ro-
tations, and W is discrete.

u(W) has no rational rotations but
has irrational rotations, and W is not
discrete.

(W) has no rational or irrational ro-
tations, and W is not discrete.



Case 1: Kulkarni Limit Set

Let I C PSL(3,C) be a commutative discrete group having the
form given previous proposition, then

Case C1.1
Aku(T) = {e1} U &, €5, Cases C1.5 or C1.6 no condition (F).

317 e U E, e_>3, {Cases C1.5 or C1.6, with condition
\

& e, {Cases C1.3 or C1.4, with condition

Case C1.2




Case 2: Form

Proposition

Let I C U be a commutative subgroup such that each
element of I has the form Diag(c, 3,a~3~1). Then there
exist two multiplicative subgroups Wy, Wo C (C*,-) such that

[ = rWl,W2 = {Diag(wl, WQ,].) | wyp € Wl, Wy € WQ} .




Case 2: Rank

Proposition

Let I C Uy be a diagonal discrete group such that every
element has the form v = Diag(wi, wa,1). Then rank(l") < 2.
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Generalizations

If o = 8™ for some n,m € Z:
1] Lo(N) U Ly(M) = &, & U{es}, if o] > 1> | or

la] <1< |f].
[D2] Lo(r) U Ll(r) = 81,62 U {63}, if |a| > |ﬁ| > 1 or
la] < |8] < 1.

If there are no integers n, m such that o = 8™
03] Lo(MN) U Li(T) = {e1, e2, €3}, if | > 1> |B] or
lal <1 <]
D4] Lo(M) U Li(T) = {e1, e2, €3}, if || > |5] > 1 or
la] < |B] < 1.
5] Lo(N)UL1(F) = &, e5U&, e, if B is an irrational rotation.
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Case 2: Kulkarni Limit Set

Let T, g C Uy be a discrete group containing loxodromic
elements, then

@ Aku(l) = §1, e; U{e3} in Cases [D1] and [D2].
@ Axu(l) ={e1, e, e3} in Cases [D3] and [D4].
Q@ Axu(l) = gl, e U &, e in Case [DS5].




Commutative case: Proof of the Main Theorem

If [ is commutative, it is conjugate to a sugroup of the Lie
groups C; or Cy. In this setting, the region Qg (") satisfies
conclusions (i) and (ii) as a consequence of the previous
heorems. Again, rank(I") < 4, this proves conclusion (iii).

On the other hand, I = Z" with r = rank(l), and then we can
write [ as a trivial semidirect product of copies of Z, thus
verifying conclusion (iv).



Generalizations

@ Introduction

© Complex Kleinian Groups: An overview
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«O> «Fr <

DA



A First Generalization v

Let I C PSL(3,C) be a solvable complex Kleinian group such
that its Kulkarni limit set does not consist of exactly four lines
in general position. Let g C [ be a virtually triangularizable
finite index subgroup. If [y is commutative then there exists a
non-empty open region Qr C CP? such that

@ Qr is the maximal open set where the action is proper and
discontinuous.

@ Qr is homeomorphic to one of the following regions: C2,
C?\ {0}, C x (Ht*UH") or C x C*.

@ Up to a finite index subgroup, the group I' leaves a full
flag invariant.




Generalizations

Thank you
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A Group Acting Morphically

Definition

Let G be an algebraic group, V' a variety, and leta : GXV — V
be an action of the group G in V, (g, x) — gx = a(g, x). One
says that G acts morphically on V if the action « satisfies the
following axioms:

@ oafe,x)=x, forany x € V, where e € G is the identity
element.

@ oa(g,hx) = a(gh,x) foranyg,h€ G andx € V.
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