

Introductio

Complex Kleinian Groups: An overview

Proof of the

Generalizations

Elementary Complex Kleinian Groups

Mauricio Toledo-Acosta

Departamento de Matemáticas Universidad de Sonora

Table of Contents

Elementa Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

- Introduction
- 2 Complex Kleinian Groups: An overview
- Proof of the Theorem
- 4 Generalizations

Introduction

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the

Generalization

Kleinian groups are discrete subgroups of PSL $(2,\mathbb{C})$, the group of biholomorphic automorphisms of the complex projective line $\mathbb{CP}^1\cong\mathbb{S}^2$, acting properly and discontinuously on a non-empty region of \mathbb{CP}^1 .

Introduction

Elementary Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem Generalization Kleinian groups are discrete subgroups of PSL $(2,\mathbb{C})$, the group of biholomorphic automorphisms of the complex projective line $\mathbb{CP}^1\cong\mathbb{S}^2$, acting properly and discontinuously on a non-empty region of \mathbb{CP}^1 .

Kleinian groups have been studied since the end of the 19th century by Fuchs, Klein, Poincaré, and many others. Kleinian groups have played a major role in several fields of mathematics, such as Riemann surfaces and Teichmüller theory, automorphic forms, holomorphic dynamics, conformal and hyperbolic geometry, etc.

Elementary Kleinian Groups

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Proof of the

Generalization

The set of accumulation points of orbits of a Kleinian group is called the limit set of the group.

Elementary Kleinian Groups

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

The set of accumulation points of orbits of a Kleinian group is called the limit set of the group.

Elementary groups are discrete subgroups of PSL $(2, \mathbb{C})$ such that the limit set is a finite set. In other words, it is empty or it consists of 1 or 2 points.

Elementary Kleinian Groups

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

The set of accumulation points of orbits of a Kleinian group is called the limit set of the group.

Elementary groups are discrete subgroups of PSL $(2, \mathbb{C})$ such that the limit set is a finite set. In other words, it is empty or it consists of 1 or 2 points.

Generalize to higher dimensions

Elementa Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Discrete subgroups of isometries of hyperbolic 3-space $\mathbb{H}^3_\mathbb{R}$ (discrete groups of conformal automorphisms of the sphere at infinity)

Conformal Kleinian Groups Discrete groups of holomorphic transformations of the complex projective line $\mathbb{CP}^1 \cong \mathbb{S}^2$ acting with nonempty region of discontinuity.

Complex Kleinian Groups

Table of Contents

Elementa Comple: Kleiniar Groups

Introductio

Complex Kleinian Groups: Ar overview

Proof of the Theorem

Generalizations

- Introduction
- 2 Complex Kleinian Groups: An overview
- 3 Proof of the Theorem
- 4 Generalizations

Elementary Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

The complex projective plane \mathbb{CP}^2 is defined as

$$\mathbb{CP}^2 = \left(\mathbb{C}^3 \setminus \{0\}\right)/\mathbb{C}^*,$$

where \mathbb{C}^* acts by the usual scalar multiplication. Let

$$[\;]:\mathbb{C}^3\setminus\{0\}\to\mathbb{CP}$$

be the quotient map. We denote the projectivization of the point $x=(x_1,x_2,x_3)\in\mathbb{C}^3$ by $[x]=[x_1:x_2:x_3]$. We denote by e_1,e_2,e_3 the projectivization of the canonical base of \mathbb{C}^3 .

Elementary Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of th

Generalization

Let $GL(3,\mathbb{C})\subset \mathcal{M}_3(\mathbb{C})$ be the subgroup of matrices with determinant not equal to 0. The group of biholomorphic automorphisms of \mathbb{CP}^2 is given by

$$PSL(3,\mathbb{C}) := GL(3,\mathbb{C})/\{scalar \ matrices\}.$$

Elementary Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Proof of the

Generalization

Let $GL(3,\mathbb{C})\subset \mathcal{M}_3(\mathbb{C})$ be the subgroup of matrices with determinant not equal to 0. The group of biholomorphic automorphisms of \mathbb{CP}^2 is given by

$$\mathsf{PSL}\left(3,\mathbb{C}\right) := \mathsf{GL}\left(3,\mathbb{C}\right)/\{\mathsf{scalar\ matrices}\}.$$

We denote the upper triangular subgroup of PSL $(3,\mathbb{C})$ by

$$U_+ = \left\{ \left[egin{array}{ccc} a_{11} & a_{12} & a_{13} \ 0 & a_{22} & a_{23} \ 0 & 0 & a_{33} \end{array}
ight] \left| egin{array}{ccc} a_{11}a_{22}a_{33} = 1, \ a_{ij} \in \mathbb{C} \end{array}
ight\}.$$

Elementa Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizatio

As in the case of automorphisms of \mathbb{CP}^1 , we classify the elements of PSL $(3,\mathbb{C})$ in three classes: elliptic, parabolic and loxodromic. However, unlike the classical case, there are several subclasses in each case. We now give a quick summary of the subclasses of elements we will be using.

Classification of elements of PSL $(3, \mathbb{C})$

Elementa Comple Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

An element $g \in PSL(3, \mathbb{C})$ is said to be:

- Elliptic if it has a diagonalizable lift in $SL(3,\mathbb{C})$ such that every eigenvalue has norm 1.
- Parabolic if it has a non-diagonalizable lift in $SL(3,\mathbb{C})$ such that every eigenvalue has norm 1.

Classification of elements of PSL $(3, \mathbb{C})$

Elementary Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

- Loxodromic if it has a lift in $SL(3,\mathbb{C})$ with an eigenvalue of norm distinct of 1. Furthermore, we say that g is:
 - Loxo-parabolic

$$\mathbf{h} = \left(egin{array}{ccc} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda^{-2} \end{array}
ight), \; |\lambda|
eq 1.$$

- A complex homothety, $\mathbf{h} = \text{Diag}(\lambda, \lambda, \lambda^{-2}), |\lambda| \neq 1.$
- A rational (resp. irrational) screw, $\mathbf{h} = \operatorname{Diag}(\lambda_1, \lambda_2, \lambda_3)$, $|\lambda_1| = |\lambda_2| \neq |\lambda_3|$ and $\lambda_1 \lambda_2^{-1} = e^{2\pi i \theta}$ with $\theta \in \mathbb{Q}$ (resp. $\theta \in \mathbb{R} \setminus \mathbb{Q}$).
- Strongly loxodromic, $\mathbf{h} = \mathrm{Diag}\left(\lambda_1, \lambda_2, \lambda_3\right)$, where $\{|\lambda_1|, |\lambda_2|, |\lambda_3|\}$ are pairwise different.

Kernel of a Group

Elementar Complex Kleinian Groups

Complex Kleinian Groups: An

Proof of the Theorem

Generalization

Consider a subgroup $\Gamma \subset \operatorname{PSL}(3,\mathbb{C})$ acting on \mathbb{CP}^2 with a global fixed point $p \in \mathbb{CP}^2$. Let $\ell \subset \mathbb{CP}^2 \setminus \{p\}$ be a projective complex line. We define the projection $\pi = \pi_{p,\ell} : \mathbb{CP}^2 \to \ell$ given by $\pi(x) = \ell \cap \overrightarrow{p,x}$. This function is holomorphic, and it determines the group homomorphism

$$\Pi = \Pi_{p,\ell} : \mathsf{PSL}(3,\mathbb{C}) \to \mathsf{Bihol}(\ell) \cong \mathsf{PSL}(2,\mathbb{C})$$

given by $\Pi(g)(x) = \pi(g(x))$ for $g \in \Gamma$. We write $\operatorname{Ker}(\Gamma)$ instead of $\operatorname{Ker}(\Pi) \cap \Gamma$.

The control group of Γ is $\Pi(\Gamma)$.

Elementa Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the

Generalization

How can we define *elementary* complex Kleinian groups?

• Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines.

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

How can we define *elementary* complex Kleinian groups?

- Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines.
- Discrete subgroups of PSL (3, C) such that its Kulkarni limit set contains a finite number of lines in general position.

Elementar Complex Kleinian Groups

Complex Kleinian

Proof of the Theorem

Generalization

How can we define *elementary* complex Kleinian groups?

- Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines.
- Discrete subgroups of PSL (3, C) such that its Kulkarni limit set contains a finite number of lines in general position.
- Discrete subgroups of PSL $(3, \mathbb{C})$ with reducible action.

Elementar Complex Kleinian Groups

Complex Kleinian Groups: An

Proof of the Theorem

Generalization

How can we define *elementary* complex Kleinian groups?

- Discrete subgroups of PSL $(3, \mathbb{C})$ such that its Kulkarni limit set contains a finite number of lines.
- Discrete subgroups of PSL (3, C) such that its Kulkarni limit set contains a finite number of lines in general position.
- Discrete subgroups of PSL $(3, \mathbb{C})$ with reducible action.
- Discrete solvable subgroups of PSL $(3, \mathbb{C})$.

Elementary Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

• If $g, h \in G$, we define the commutator as $[g, h] = g^{-1}h^{-1}gh$.

• We define the commutator subgroup as

$$[G, G] = \{[g, h] | g, h \in G\}$$

• The derived series of *G* is given by

$$G^{(0)} = G, \quad G^{(i+1)} = \left[G^{(i)}, G^{(i)}\right].$$

• We say that G is solvable if, for some $n \ge 0$, we have $G^{(n)} = \{id\}$.

Elementar Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

- If $g, h \in G$, we define the commutator as $[g, h] = g^{-1}h^{-1}gh$.
- We define the commutator subgroup as

$$[G,G] = \{[g,h] \,|\, g,h \in G\}.$$

• The derived series of G is given by

$$G^{(0)} = G, \quad G^{(i+1)} = \left[G^{(i)}, G^{(i)}\right].$$

• We say that G is solvable if, for some $n \geq 0$, we have $G^{(n)} = \{id\}.$

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

- If $g, h \in G$, we define the commutator as $[g, h] = g^{-1}h^{-1}gh$.
- We define the commutator subgroup as

$$[G,G] = \{[g,h] \,|\, g,h \in G\}.$$

• The derived series of G is given by

$$G^{(0)} = G, \quad G^{(i+1)} = \left[G^{(i)}, G^{(i)}\right].$$

• We say that G is solvable if, for some $n \ge 0$, we have $G^{(n)} = \{id\}.$

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

- If $g, h \in G$, we define the commutator as $[g, h] = g^{-1}h^{-1}gh$.
- We define the commutator subgroup as

$$[G, G] = \{[g, h] | g, h \in G\}.$$

• The derived series of G is given by

$$G^{(0)} = G, \quad G^{(i+1)} = \left[G^{(i)}, G^{(i)}\right].$$

• We say that G is solvable if, for some $n \ge 0$, we have $G^{(n)} = \{id\}.$

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

• The infinite dihedral group is solvable

$$\mathsf{Dih}_{\infty} = \langle \mathsf{Rot}_{\infty}, \ z \mapsto -z \rangle.$$

- Any triangular group is solvable, with solvability length at most 3.
- The special orthogonal group is not solvable,

$$\left\{ \left[\begin{array}{cc} a & -c \\ c & \overline{a} \end{array} \right] \middle| |a|^2 + |b|^2 = 1 \right\} \subset \mathsf{PSL}(2,\mathbb{C})$$

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

The infinite dihedral group is solvable

$$\mathsf{Dih}_{\infty} = \langle \mathsf{Rot}_{\infty}, \ z \mapsto -z \rangle.$$

- Any triangular group is solvable, with solvability length at most 3.
- The special orthogonal group is not solvable,

$$\left\{ \left[\begin{array}{cc} a & -c \\ c & \overline{a} \end{array} \right] \middle| |a|^2 + |b|^2 = 1 \right\} \subset \mathsf{PSL}(2,\mathbb{C})$$

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

• The infinite dihedral group is solvable

$$\mathsf{Dih}_{\infty} = \langle \mathsf{Rot}_{\infty}, \ z \mapsto -z \rangle.$$

- Any triangular group is solvable, with solvability length at most 3.
- The special orthogonal group is not solvable,

$$\left\{\left[egin{array}{cc} a & -c \ c & \overline{a} \end{array}
ight] \Big| |a|^2 + |b|^2 = 1
ight\} \subset \mathsf{PSL}\left(2,\mathbb{C}
ight)$$

Elementary Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

• The infinite dihedral group is solvable

$$\mathsf{Dih}_{\infty} = \langle \mathsf{Rot}_{\infty}, \ z \mapsto -z \rangle.$$

- Any triangular group is solvable, with solvability length at most 3.
- The special orthogonal group is not solvable,

$$\left\{\left[egin{array}{cc} a & -c \ c & \overline{a} \end{array}
ight] \Big| |a|^2 + |b|^2 = 1
ight\} \subset \mathsf{PSL}\left(2,\mathbb{C}
ight)$$

The Kulkarni Limit Set

Elementary Complex Kleinian

Introduction Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

From now on, let $\Gamma \subset \mathsf{PSL}(3,\mathbb{C})$ be a discrete subgroup acting on \mathbb{CP}^2 .

Definition

- Let $L_0(\Gamma)$ be the closure of the set of points in \mathbb{CP}^n with infinite isotropy group.
- Let $L_1(\Gamma)$ be the closure of the set of cluster points of orbits of points in $\mathbb{CP}^n \setminus L_0(\Gamma)$.
- Let $L_2(\Gamma)$ be the closure of the set of cluster points of compact sets of $\mathbb{CP}^n \setminus (L_0(\Gamma) \cup L_1(\Gamma))$.

$$\Lambda_{Kul}(\Gamma) = \overline{L_0(\Gamma) \cup L_1(\Gamma) \cup L_2(\Gamma)}, \quad \Omega_{Kul}(\Gamma) = \mathbb{CP}^n \setminus \Lambda_{Kul}(\Gamma).$$

Elementai Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Proof of the Theorem

Generalization

The Kulkarni limit set $\Lambda_{\text{Kul}}(\Gamma)$ in \mathbb{CP}^2 is made up of points and complex projective lines. It contains 1, 2, 3, 4 or ∞ lines in general position.

The equicontinuity region for Γ , denoted Eq(Γ), is defined to be the set of points $z \in \mathbb{CP}^n$ for which there is an open neighborhood U of z such that Γ restricted to U is a normal family. Γ acts properly and discontinuously on Eq(Γ), and

$$\operatorname{Eq}(\Gamma) \subset \Omega_{\operatorname{Kul}}(\Gamma)$$

Elementar Complex Kleinian Groups

Introduction
Complex
Kleinian
Groups: An
overview

Proof of the Theorem

Generalization

The Kulkarni limit set $\Lambda_{\text{Kul}}(\Gamma)$ in \mathbb{CP}^2 is made up of points and complex projective lines. It contains 1, 2, 3, 4 or ∞ lines in general position.

The equicontinuity region for Γ , denoted Eq(Γ), is defined to be the set of points $z \in \mathbb{CP}^n$ for which there is an open neighborhood U of z such that Γ restricted to U is a normal family. Γ acts properly and discontinuously on Eq(Γ), and

$$\mathsf{Eq}(\Gamma) \subset \Omega_{\mathsf{Kul}}(\Gamma)$$

Elementar Complex Kleinian Groups

Introduction Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

The Kulkarni limit set $\Lambda_{\text{Kul}}(\Gamma)$ in \mathbb{CP}^2 is made up of points and complex projective lines. It contains 1, 2, 3, 4 or ∞ lines in general position.

The equicontinuity region for Γ , denoted Eq(Γ), is defined to be the set of points $z \in \mathbb{CP}^n$ for which there is an open neighborhood U of z such that Γ restricted to U is a normal family.

 Γ acts properly and discontinuously on Eq(Γ), and

$$\operatorname{Eq}(\Gamma) \subset \Omega_{\operatorname{Kul}}(\Gamma)$$

Elementar Complex Kleinian Groups

Introduction Complex Kleinian Groups: An overview

Proof of the Theorem The Kulkarni limit set $\Lambda_{Kul}(\Gamma)$ in \mathbb{CP}^2 is made up of points and complex projective lines. It contains 1, 2, 3, 4 or ∞ lines in general position.

The equicontinuity region for Γ , denoted Eq(Γ), is defined to be the set of points $z \in \mathbb{CP}^n$ for which there is an open neighborhood U of z such that Γ restricted to U is a normal family. Γ acts properly and discontinuously on Eq(Γ), and

$$Eq(\Gamma) \subset \Omega_{Kul}(\Gamma)$$
.

Background

Elementa Complex Kleinian Groups

Introductio

Complex Kleinian Groups: A overview

Proof of the

Generalizations

Action on \mathbb{CP}^2

Background

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Proof of the

Generalization:

Action on \mathbb{CP}^2

Irreducible

Background

Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Proof of the Theorem

Generalization:

Action on \mathbb{CP}^2

Irreducible ✓

Elementary Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

Action on \mathbb{CP}^2

Irreducible \checkmark Reducible action $\bigg\{$

Elementary Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Proof of the Theorem

Generalizations

Action on \mathbb{CP}^2

Irreducible \checkmark Reducible action $\begin{cases} \mathsf{Solvable} \end{cases}$

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Proof of the Theorem

Generalizations

Action on \mathbb{CP}^2

Elementa Comple> Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

Action on \mathbb{CP}^2

Limit sets

Elementar Complex Kleinian

Introductio

Complex Kleinian Groups: An overview

Proof of the

Generalization

Limit sets

Elementa Complex Kleinian

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

Main Result

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Theorem

Let $\Gamma \subset PSL(3,\mathbb{C})$ be a triangularizable complex Kleinian group such that its Kulkarni limit set does not consist of exactly four lines in general position. Then there exists a non-empty open region $\Omega_{\Gamma} \subset \mathbb{CP}^2$ such that

- Ω_{Γ} is the maximal open set where the action is proper and discontinuous.
- ① Ω_{Γ} is homeomorphic to one of the following regions: \mathbb{C}^2 , $\mathbb{C}^2 \setminus \{0\}$, $\mathbb{C} \times (\mathbb{H}^+ \cup \mathbb{H}^-)$ or $\mathbb{C} \times \mathbb{C}^*$.

Main Result

Elementary Complex Kleinian Groups

Introduction Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Theorem

Let $\Gamma \subset PSL(3,\mathbb{C})$ be a triangularizable complex Kleinian group such that its Kulkarni limit set does not consist of exactly four lines in general position. Then

The group Γ can be written as

$$\Gamma = \Gamma_p \rtimes \underbrace{\langle \eta_1 \rangle \rtimes ... \rtimes \langle \eta_m \rangle}_{\textit{loxo-parabolic}} \rtimes \underbrace{\langle \gamma_1 \rangle \rtimes ... \rtimes \langle \gamma_n \rangle}_{\textit{strongly loxodromic}}$$

where Γ_p is the subgroup of Γ consisting of all the parabolic elements of Γ .

The group Γ leaves a full flag invariant.

Main Result

Elementary Complex Kleinian Groups

Introduction
Complex
Kleinian
Groups: An
overview

Proof of the Theorem

Generalization

Theorem

Let $\Gamma \subset PSL(3,\mathbb{C})$ be a solvable complex Kleinian group such that its Kulkarni limit set does not consist of exactly four lines in general position. Then

The group Γ can be written as

$$\Gamma = \Gamma_p \rtimes \underbrace{\langle \eta_1 \rangle \rtimes ... \rtimes \langle \eta_m \rangle}_{\textit{loxo-parabolic}} \rtimes \underbrace{\langle \gamma_1 \rangle \rtimes ... \rtimes \langle \gamma_n \rangle}_{\textit{strongly loxodromic}}$$

where Γ_p is the subgroup of Γ consisting of all the parabolic elements of Γ .

The group Γ leaves a full flag invariant.

Table of Contents

Elementa Comple Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

- Introduction
- 2 Complex Kleinian Groups: An overview
- 3 Proof of the Theorem
- 4 Generalizations

Ideas behind the proof

Elementa Comple Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

The parabolic part is described in

Barrera, W., Cano, A., Navarrete, J. P., & Seade, J. (2022). Discrete parabolic groups in PSL (3, C). Linear Algebra and its Applications, 653, 430-500.

(v) Invariant Flag

Elementa Comple Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Borel fixed point theorem: Let G be a connected solvable group acting morphically on a non-empty complete variety V. Then G has a fixed point in V. Morphical action

Applying this theorem to the Zariski closure of Γ yields that Γ is virtually triangularizable. Namely, Γ has a finite index subgroup such that, up to conjugation, is upper triangular.

This proves (v)

(v) Invariant Flag

Elementa Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Borel fixed point theorem: Let G be a connected solvable group acting morphically on a non-empty complete variety V. Then G has a fixed point in V. Morphical action

Applying this theorem to the Zariski closure of Γ yields that Γ is virtually triangularizable. Namely, Γ has a finite index subgroup such that, up to conjugation, is upper triangular.

This proves (v).

Conclusions (i)-(iv) are proved together.

Elementarj Complex Kleinian Groups

Introductio

Complex Kleinian Groups: Ar overview

Proof of th

Generalization

Restrictions on the Elements of a Non-commutative Group

Elementa Complex Kleinian Groups

ntroductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Proposition

Let $\Gamma \subset U_+$ be a discrete subgroup. Let $\gamma \in \Gamma$ be an irrational screw $\gamma = \text{Diag}(\beta^{-2} e^{-6\pi i \theta}, \beta e^{4\pi i \theta}, \beta e^{2\pi i \theta})$, for some $|\beta| \neq 1$ and $\theta \in \mathbb{R} \setminus \mathbb{Q}$, then Γ is commutative.

Proposition

Let $\Gamma \subset U_+$ be a non-commutative, torsion-free discrete subgroup, then Γ cannot contain a type I complex homothety.

The Core of a Group

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

The core of Γ is an important purely parabolic subgroup of a complex Kleinian group Γ which determines the dynamics of Γ .

Proposition

The elements of $Core(\Gamma)$ have the form

$$g_{x,y} = \left[\begin{array}{ccc} 1 & x & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right],$$

for some $x, y \in \mathbb{C}$.

The Core of a Group

Elementa Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

It is straightforward to verify that

$$\Lambda_{\mathsf{Kul}}\left(\mathsf{Core}(\Gamma)\right) = \bigcup_{g_{\mathsf{x},y} \in \mathsf{Core}(\Gamma)} \overleftarrow{e_1, [0:-y:x]}$$

We denote this pencil of lines by $C(\Gamma) = \Lambda_{Kul}(Core(\Gamma))$.

Proposition

Let $\Gamma \subset U_+$ be a discrete group, then every element of Γ leaves $\mathcal{C}(\Gamma)$ invariant.

Commutativity

 $\begin{cases} \Gamma \text{ is not commutative} \\ \\ \Gamma \text{ is commutative} \end{cases}$

Decomposition of Non-Commutative Triangular Groups

Elementa Comple: Kleiniar Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization:

Theorem

Let $\Gamma \subset U_+$ be a non-commutative, torsion free, complex Kleinian group, then

$$\Gamma = Core(\Gamma) \rtimes \langle \xi_1 \rangle \rtimes ... \rtimes \langle \xi_r \rangle \rtimes \rtimes \langle \eta_1 \rangle \rtimes ... \rtimes \langle \eta_m \rangle \rtimes \langle \gamma_1 \rangle \rtimes ... \rtimes \langle \gamma_n \rangle.$$

Furthermore, if $k = rank(Core(\Gamma))$ then $k + r + m + n \le 4$.

Elementa Complex Kleiniar Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

$\begin{array}{c|c} & & & & & & & \\ \hline \begin{bmatrix} 1 & x & y \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix} & \begin{bmatrix} \alpha & x & y \\ 0 & \beta & z \\ 0 & 0 & \beta \end{bmatrix} & \begin{bmatrix} \alpha & x & y \\ 0 & \beta & z \\ 0 & 0 & \gamma \end{bmatrix} \\ z \neq 0 & \alpha \neq \beta, \ z \neq 0 & \beta \neq \gamma \\ \text{Loxo-parabolic} & \text{Strongly loxodr} \\ \hline \\ \text{Core}(\Gamma) & A \setminus \text{Ker}(\Gamma) & \text{Ker}(\lambda_{23}) \setminus A \\ \end{array}$

Morphisms λ

Elementai Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Let $\lambda_{12}, \lambda_{23}, \lambda_{13}: (U_+, \cdot) \to (\mathbb{C}^*, \cdot)$ be the group morphisms given by

$$\lambda_{12}([\alpha_{ij}]) = \alpha_{11}\alpha_{22}^{-1}$$
$$\lambda_{23}([\alpha_{ij}]) = \alpha_{22}\alpha_{33}^{-1}$$
$$\lambda_{13}([\alpha_{ij}]) = \alpha_{11}\alpha_{33}^{-1}.$$

Strategy of the proof:

- Decomposition of Γ in terms of $Ker(\lambda_{23})$.
- Decompose $Ker(\lambda_{23})$ in terms of $Ker(\lambda_{12})$.
- Decompose $A = \text{Ker}(\lambda_{12}) \cap \text{Ker}(\lambda_{23})$ in terms of $\text{Ker}(\Gamma)$

Rank

Elementary Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of th

Generalization

Theorem (Bestvina, Kapovich, Kleiner)

Let Γ be a group acting properly and discontinuously on a contractible manifold of dimension m, then $obdim(\Gamma) \leq m$.

Rank

Elementary Complex Kleinian Groups

Complex Kleinian Groups: An overview

Proof of th Theorem

Generalizatio

Theorem (Bestvina, Kapovich, Kleiner)

Let Γ be a group acting properly and discontinuously on a contractible manifold of dimension m, then $obdim(\Gamma) \leq m$.

In our case, it can be re-stated as:

Theorem

Let $\Gamma \subset U_+$ be a non-commutative, torsion free, complex Kleinian group acting properly and discontinuously on a simply connected domain $\Omega \subset \mathbb{CP}^2$, then $k+r+m+n \leq 4$.

Rank

Theorem (Bestvina, Kapovich, Kleiner)

Let Γ be a group acting properly and discontinuously on a contractible manifold of dimension m, then $obdim(\Gamma) < m$.

In our case, it can be re-stated as:

Theorem

Let $\Gamma \subset U_+$ be a non-commutative, torsion free, complex Kleinian group acting properly and discontinuously on a simply connected domain $\Omega \subset \mathbb{CP}^2$, then k+r+m+n < 4.

Find a simply connected domain $\Omega \subset \mathbb{CP}^2$ where Γ acts properly and discontinuously, and then apply the theorem. In some cases, we write the explicit decomposition of Γ and verify that $rank(\Gamma) < 4$.

Some cases

Elementar Complex Kleinian Groups

Introduction

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Denote $\Sigma = \Pi(\Gamma)$. If Σ is discrete and $Ker(\Gamma)$ is finite. If $|\Lambda(\Sigma)| \neq 2$, let

$$\Omega = \left(\bigcup_{z \in \Omega(\Sigma)} \overleftarrow{e_1, z} \right) \setminus \{e_1\}.$$

We know that Γ acts properly and discontinuously on Ω . If $|\Lambda(\Sigma)|=0,1$ or ∞ , then each connected component of Ω is simply connected, since they are respectively homeomorphic to \mathbb{CP}^2 , \mathbb{C}^2 or $\mathbb{C} \times \mathbb{H}$. By the theorem, it follows $k+r+m+n \leq 4$

Elementar Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

For non-commutative Γ , using these ideas, we have constructed an open subset $\Omega_{\Gamma} \subset \mathbb{CP}^2$ such that the orbits of every compact set $K \subset \Omega_{\Gamma}$ accumulate on $\mathbb{CP}^2 \setminus \Omega_{\Gamma}$. Thus we can define a limit set for the action of Γ by $\Lambda_{\Gamma} := \mathbb{CP}^2 \setminus \Omega_{\Gamma}$. This limit set describes the dynamics of Γ , and the open region Ω_{Γ} satisfies (i) and (ii).

Also, we prove that $rank(\Gamma) \leq 4$. This verifies (iii).

Commutative groups

Elementary Complex Kleinian Groups

Introducti

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Theorem (Barrera, Cano, Navarrete, Seade)

Let $\Gamma \subset U_+$ be a commutative group, then Γ is conjugate in $PSL(3,\mathbb{C})$ to a subgroup of one of the following Abelian Lie Groups:

•

$$C_1 = \left\{ \left(\begin{array}{ccc} \alpha^{-2} & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & 0 & \alpha \end{array} \right) \middle| \alpha \in \mathbb{C}^*, \beta \in \mathbb{C} \right\}.$$

0

$$C_2 = \{ Diag(\alpha, \beta, \alpha^{-1}\beta^{-1}) \mid \alpha, \beta \in \mathbb{C}^* \}.$$

•

$$C_3 = \left\{ \left(\begin{array}{ccc} 1 & 0 & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{array} \right) \middle| \beta, \gamma \in \mathbb{C} \right\}.$$

Commutative groups

Elementa Comple: Kleiniar Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

Theorem (Barrera, Cano, Navarrete, Seade)

•

$$C_4 = \left\{ \left(egin{array}{ccc} 1 & eta & \gamma \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight) \left| eta, \gamma \in \mathbb{C}
ight\}.$$

•

$$\mathcal{C}_5 = \left\{ \left(egin{array}{ccc} 1 & eta & \gamma \ 0 & 1 & eta \ 0 & 0 & 1 \end{array}
ight) \middle| eta, \gamma \in \mathbb{C}
ight\}.$$

Case 1: Form

Elementa Comple Kleinian Groups

Introducti

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Proposition

Let $\Gamma \subset U_+$ be a commutative subgroup such that each element of Γ has the form C_1 . Then there exists an additive subgroup $W \subset (\mathbb{C},+)$, and a group morphism $\mu: (W,+) \to (\mathbb{C}^*,\cdot)$ such that

$$\Gamma = \Gamma_{W,\mu} = \left\{ \begin{bmatrix} \mu(w)^{-2} & 0 & 0 \\ 0 & \mu(w) & w\mu(w) \\ 0 & 0 & \mu(w) \end{bmatrix} \middle| w \in W \right\}.$$

Case 1: Discreteness and Rank

Elementa Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

Proposition

Let $\Gamma = \Gamma_{W,\mu} \subset U_+$ be a group as described in previous proposition. Γ is discrete if and only if $\operatorname{rank}(W) \leq 3$ and the morphism μ satisfies the following condition:

• Whenever we have a sequence $\{w_k\} \in W$ of distinct elements such that $w_k \to 0$, either $\mu(w_k) \to 0$ or $\mu(w_k) \to \infty$.

Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization:

Case	Conditions
C1.1	$\mu(W)$ has rational rotations and W is
	discrete.
C1.2	$\mu(W)$ has rational rotations and W is
	not discrete.
C1.3	$\mu(W)$ has no rational rotations but
	has irrational rotations, and $\it W$ is dis-
	crete.
C1.4	$\mu(W)$ has no rational or irrational ro-
	tations, and W is discrete.
C1.5	$\mu(W)$ has no rational rotations but
	has irrational rotations, and $\it W$ is not
	discrete.
C1.6	$\mu(W)$ has no rational or irrational ro-
	tations, and W is not discrete.

Case 1: Kulkarni Limit Set

Elementa Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Theorem

Let $\Gamma \subset PSL(3,\mathbb{C})$ be a commutative discrete group having the form given previous proposition, then

$$\Lambda_{\textit{Kul}}(\Gamma) = \begin{cases} \overleftarrow{e_1, e_2}, & \left\{ \textit{Cases C1.3 or C1.4, with condition} \right. \\ \left. \left\{ e_1 \right\} \cup \overleftarrow{e_2, e_3}, \right. & \left. \left\{ \textit{Cases C1.5 or C1.6 no condition (F).} \right. \\ \left. \left\{ \overrightarrow{e_1, e_2} \cup \overleftarrow{e_2, e_3}, \right. \right. & \left\{ \textit{Cases C1.5 or C1.6, with condition Case C1.2} \right. \end{cases}$$

Case 2: Form

Elementa Comple: Kleiniar Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Proposition

Let $\Gamma \subset U_+$ be a commutative subgroup such that each element of Γ has the form $Diag(\alpha, \beta, \alpha^{-1}\beta^{-1})$. Then there exist two multiplicative subgroups $W_1, W_2 \subset (\mathbb{C}^*, \cdot)$ such that

$$\Gamma = \Gamma_{W_1,W_2} = \{ Diag(w_1, w_2, 1) \mid w_1 \in W_1, w_2 \in W_2 \}.$$

Case 2: Rank

Comple Kleiniai Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Proposition

Let $\Gamma \subset U_+$ be a diagonal discrete group such that every element has the form $\gamma = Diag(w_1, w_2, 1)$. Then $rank(\Gamma) \leq 2$.

Case 2

Elementary Complex Kleinian Groups

ntroductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

If $\alpha^n = \beta^m$ for some $n, m \in \mathbb{Z}$:

[D1]
$$L_0(\Gamma) \cup L_1(\Gamma) = \overleftarrow{e_1, e_2} \cup \{e_3\}$$
, if $|\alpha| > 1 > |\beta|$ or $|\alpha| < 1 < |\beta|$.

[D2]
$$L_0(\Gamma) \cup L_1(\Gamma) = \overleftarrow{e_1, e_2} \cup \{e_3\}$$
, if $|\alpha| > |\beta| > 1$ or $|\alpha| < |\beta| < 1$.

If there are no integers n, m such that $\alpha^n = \beta^m$:

[D3]
$$L_0(\Gamma) \cup L_1(\Gamma) = \{e_1, e_2, e_3\}$$
, if $|\alpha| > 1 > |\beta|$ or $|\alpha| < 1 < |\beta|$.

[D4]
$$L_0(\Gamma) \cup L_1(\Gamma) = \{e_1, e_2, e_3\}$$
, if $|\alpha| > |\beta| > 1$ or $|\alpha| < |\beta| < 1$.

[D5]
$$L_0(\Gamma) \cup L_1(\Gamma) = \overleftarrow{e_1, e_2} \cup \overleftarrow{e_2, e_3}$$
, if β is an irrational rotation.

Case 2: Kulkarni Limit Set

Elementa Complex Kleiniar Groups

Introduction

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

Theorem

Let $\Gamma_{\alpha,\beta}\subset U_+$ be a discrete group containing loxodromic elements, then

- $\Lambda_{Kul}(\Gamma) = \overleftarrow{e_1, e_2} \cup \{e_3\} \text{ in Cases [D1] and [D2]}.$
- ① $\Lambda_{Kul}(\Gamma) = \{e_1, e_2, e_3\}$ in Cases [D3] and [D4].
- $\bullet \quad \Lambda_{Kul}(\Gamma) = \overleftarrow{e_1, e_2} \cup \overleftarrow{e_2, e_3} \text{ in Case [D5]}.$

Commutative case: Proof of the Main Theorem

Elementa Complex Kleinian Groups

ntroductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

If Γ is commutative, it is conjugate to a sugroup of the Lie groups C_1 or C_2 . In this setting, the region $\Omega_{\text{Kul}}(\Gamma)$ satisfies conclusions (i) and (ii) as a consequence of the previous heorems. Again, $\text{rank}(\Gamma) \leq 4$, this proves conclusion (iii).

On the other hand, $\Gamma \cong \mathbb{Z}^r$ with $r = \operatorname{rank}(\Gamma)$, and then we can write Γ as a trivial semidirect product of copies of \mathbb{Z} , thus verifying conclusion (iv).

Table of Contents

Elementa Comple: Kleiniar Groups

Introductio

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalizations

- Introduction
- 2 Complex Kleinian Groups: An overview
- 3 Proof of the Theorem
- 4 Generalizations

A First Generalization ✓

ilementary Complex Kleinian Groups

Introducti

Complex Kleinian Groups: An overview

Proof of the Theorem

Generalization

Theorem

Let $\Gamma \subset PSL(3,\mathbb{C})$ be a solvable complex Kleinian group such that its Kulkarni limit set does not consist of exactly four lines in general position. Let $\Gamma_0 \subset \Gamma$ be a virtually triangularizable finite index subgroup. If Γ_0 is commutative then there exists a non-empty open region $\Omega_\Gamma \subset \mathbb{CP}^2$ such that

- Ω_{Γ} is the maximal open set where the action is proper and discontinuous.
- ① Ω_{Γ} is homeomorphic to one of the following regions: \mathbb{C}^2 , $\mathbb{C}^2 \setminus \{0\}$, $\mathbb{C} \times (\mathbb{H}^+ \cup \mathbb{H}^-)$ or $\mathbb{C} \times \mathbb{C}^*$.
- Φ Up to a finite index subgroup, the group Γ leaves a full flag invariant.

Elementary Complex Kleinian Groups

Introductio

Complex Kleinian Groups: An

Proof of th

Generalizations

Thank you

Table of Contents

Elementar Complex Kleinian

Appendix

A Group Acting Morphically

Elementar Complex Kleinian Groups

Appendix

Definition

Let G be an algebraic group, V a variety, and let $\alpha: G \times V \to V$ be an action of the group G in V, $(g,x) \mapsto gx = \alpha(g,x)$. One says that G acts morphically on V if the action α satisfies the following axioms:

- $\alpha(e,x) = x, \text{ for any } x \in V, \text{ where } e \in G \text{ is the identity element.}$
- $\alpha(g, hx) = \alpha(gh, x)$ for any $g, h \in G$ and $x \in V$.

Solvable groups are virtually triangular