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Abstract
In this work we study and provide a full description, up to a finite index subgroup, of
the dynamics of solvable complex Kleinian subgroups of PSL (3, C). These groups
have simple dynamics, contrary to strongly irreducible groups. Because of this, we
propose to define elementary subgroups of PSL (3, C) as solvable groups. We show
that triangular groups can be decomposed in four layers, via the semi-direct product of
four types of elements,with parabolic elements in the innermost layers and loxodromic
elements in the outer layers. It is also shown that solvable groups, up to a finite index
subgroup, act properly and discontinuously on the complement of either a line, two
lines, a line and a point outside of the line, or a pencil of lines passing through a point.
These results are another step towards the completion of the study of elementary
subgroups of PSL (3, C).
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1 Introduction

Kleinian groups are discrete subgroups of PSL (2, C), the group of biholomorphic
automorphisms of the complex projective line CP

1, acting properly and disconti-
nuously on a non-empty region ofCP

1. Kleinian groups have been thoroughly studied
since the end of the 19th century by Lazarus Fuchs, Felix Klein, Henri Poincaré
(who named them after Klein in Poincaré 1883) and many others. Kleinian groups
have played a major role in several fields of mathematics, such as Riemann surfaces
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and Teichmüller theory, automorphic forms, holomorphic dynamics, conformal and
hyperbolic geometry, etc. For a detailed study of Kleinian groups, see Maskit (1987)
and Matsuzaki and Taniguchi (1998). In Seade and Verjovsky (2001), José Seade and
Alberto Verjovsky introduced the notion of complex Kleinian groups, which are dis-
crete subgroups of PSL (n + 1, C) acting properly and discontinuously on an open
invariant subset of CP

n . In the last decade, there has been a great effort to complete
the study of the dynamics of complex Kleinian groups in dimension 2 [see for exam-
ple (Barrera et al. 2011b, 2014, 2016, 2018b; Cano et al. 2013; Cano and Seade
2014)]. In this regard, one of the pieces left to complete is the full description of the
discrete subgroups of PSL (3, C) which have simple dynamics. These subgroups of
PSL (3, C) are the analogous of elementary subgroups of PSL (2, C). However, there
is no standard definition of elementary subgroups of PSL (3, C).

In the context of Kleinian groups, elementary groups are discrete subgroups of
PSL (2, C) such that the limit set is a finite set, in which case the limit set has 0, 1, or
2 points. These groups have simple dynamics. In complex dimension 2, the Kulkarni
limit set is either a finite union of complex lines (1, 2 or 3) or it contains an infinite
number of complex lines. On the other hand, the limit set either contains a finite
number of lines in general position (1, 2, 3 or 4) or it contains infinitely many lines in
general position (Barrera et al. 2016). Therefore, one could define elementary groups
in complex dimension 2 as discrete subgroups of PSL (3, C) such that the Kulkarni
limit set contains a finite number of lines, or discrete subgroups of PSL (3, C) such that
the Kulkarni limit set contains a finite number of lines in general position. However,
this definition would not be useful in complex dimension greater than 2 since there is
no similar classification of the Kulkarni limit set in this case.

In this work, we propose to define elementary complex Kleinian subgroups of
PSL (3, C) as solvable groups, which also generalizes the notion of elementary groups
of PSL (2, C). We will show that solvable groups exhibit simple dynamics contrary
to the rich dynamics of strongly irreducible discrete subgroups of PSL (3, C), which
have been extensively studied (Barrera et al. 2011a; Cano et al. 2013). The study
of solvable groups will help to complete the classification and understanding of the
dynamics of all complexKleinian groups of PSL (3, C). Thiswork is a step towards the
implementation of a Sullivan’s dictionary between the theory of iteration of functions
in several complex variables and the dynamics of complex Kleinian groups.

Themain purpose of this paper is to provide a precise description of discrete solvable
subgroups of PSL (3, C) and their dynamics, up to a finite index subgroup. This paper
generalizes and builds upon the work done in Barrera et al. (2018a), in which the
authors study complex Kleinian groups whose elements are parabolic. To make these
generalizations, additional and new techniques were developed in this work.

Before stating the main theorem of this paper, it is necessary to introduce some
notation. We denote by PSL (3, C) the group of biholomorphic automorphisms of the
complex projective planeCP

2.We denote the upper triangular subgroup of PSL (3, C)

by

U+ =
⎧
⎨

⎩

⎡

⎣
a11 a12 a13
0 a22 a23
0 0 a33

⎤

⎦
∣
∣
∣ a11a22a33 = 1, ai j ∈ C

⎫
⎬

⎭
.
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Let λ12, λ23, λ13 : (U+, ·) → (C∗, ·) be the group morphisms given by

λ12
([

αi j
]) = α11α

−1
22 , λ23

([
αi j

]) = α22α
−1
33 , λ13

([
αi j

]) = α11α
−1
33 .

If Γ ⊂ U+ is a group, we simplify the notation by writing Ker
(
λi j

)
instead of

Ker
(
λi j

) ∩ Γ . In this paper we show the following theorem

Theorem 1 Let Γ ⊂ PSL (3, C) be a triangularizable complex Kleinian group such
that its Kulkarni limit set does not consist of exactly four lines in general position.
Then, there exists a non-empty open region ΩΓ ⊂ CP

2 such that

(i) ΩΓ is the maximal open set where the action is proper and discontinuous.
(ii) ΩΓ is homeomorphic to one of the following regions:C

2,C2\{0},C×(
H

+ ∪ H
−)

or C × C
∗.

(iii) Γ is finitely generated and rank(Γ ) ≤ 4.
(iv) The group Γ can be written as

Γ = Γp � 〈η1〉 � · · · � 〈ηm〉 � 〈γ1〉 � · · · � 〈γn〉

where Γp is the subgroup of Γ consisting of all the parabolic elements of Γ . The
elementsη1, ..., ηm are loxo-parabolic elements such thatλ12(η1), ...,λ12(ηm)gen-
erate the groupλ12 (Ker(λ23)). The elementsγ1, ..., γn are strongly loxodromicand
complex homotheties such that λ23(η1), ..., λ23(ηm) generate the group λ23 (Γ ).

(v) The group Γ leaves a full flag invariant.

Our ultimate goal is to prove the previous theorem for solvable subgroups of
PSL (3, C) satisfying the hypothesis of Theorem 1. Every solvable subgroup of
PSL (3, C) contains a finite index subgroup conjugate to some subgroup of U+. As a
consequence of this, a fundamental step towards this goal is to prove Theorem 1. This
is the first main result proved in this paper. The second result we prove in this paper
is Theorem 2, which is a partial generalization of Theorem 1 for solvable subgroups
of PSL (3, C).

Theorem 2 Let Γ ⊂ PSL (3, C) be a solvable complex Kleinian group such that its
Kulkarni limit set does not consist of exactly four lines in general position. Let Γ0 ⊂ Γ

be a virtually triangularizable finite index subgroup. If Γ0 is commutative then there
exists a non-empty open region ΩΓ ⊂ CP

2 such that

(i) ΩΓ is the maximal open set where the action is proper and discontinuous.
(ii) ΩΓ is homeomorphic to one of the following regions: C

2, C
2\{0}, C ×(

H
+ ∪ H

−) or C × C
∗.

(iii) Up to a finite index subgroup, the group Γ leaves a full flag invariant.

The paper is organized as follows: In Sect. 2 we quickly review the necessary
facts and definitions. In Sect. 3, we give a dynamic description of non-commutative
discrete triangular subgroups of PSL (3, C) and prove a decomposition theorem for
these groups, via semi-direct products. In Sect. 4, we characterize and describe the
dynamics of commutative discrete triangular subgroups of PSL (3, C). Finally, we
prove Theorems 1 and 2 in Sect. 5.
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2 Notation and Background

2.1 Complex Kleinian Groups

The complex projective plane CP
2 is defined as

CP
2 = (C3\{0})/C

∗,

where C
∗ := C\{0} acts by the usual scalar multiplication. Let [ ] : C

3\{0} → CP
2

be the quotient map.We denote the projectivization of the point x = (x1, x2, x3) ∈ C
3

by [x] = [x1 : x2 : x3]. We denote by e1, e2, e3 the projectivization of the canonical
base of C

3.
Let M3 (C) be the group of all square matrices of size 3 × 3 with complex coef-

ficients, and let SL (3, C) ⊂ M3 (C) (resp. GL (3, C)) be the subgroup of matrices
with determinant equal to 1 (resp. not equal to 0). The group of biholomorphic auto-
morphisms of CP

2 is given by

PSL (3, C) ∼= PGL (3, C) := GL (3, C) /{scalar matrices}.

If g ∈ PSL (3, C) (resp. z ∈ CP
2), we denote by g ∈ SL (3, C) any of its lifts (resp.

z ∈ C
3). We denote again by [ ] : C

3\{0} → CP
2 the quotient map. We denote by

Fix(g) ⊂ CP
2 the set of fixed points of an automorphism g ∈ PSL (3, C).

Now we describe a helpful construction used to reduce the action of a group Γ ⊂
PSL (3, C) onCP

2 to the action of a subgroup of PSL (2, C) on a complex line inCP
2,

thus, simplifying the study of the dynamics of Γ (see Chapter 5 of Cano et al. 2013 for
details). Consider a subgroup Γ ⊂ PSL (3, C) acting on CP

2 with a global fixed point
p ∈ CP

2. Let � ⊂ CP
2\{p} be a projective complex line. We define the projection

π = πp,� : CP
2 → � given by π(x) = � ∩ ←→p, x . This function is holomorphic, and it

allows us to define the group homomorphism

Π = Πp,� : Γ → Bihol(�) ∼= PSL (2, C)

given by Π(g)(x) = π(g(x)) for g ∈ Γ (Lemma 6.11 of Cano and Seade 2014). To
simplify the notation we will write Ker(Γ ) instead of Ker(Π) ∩ Γ .

Consider M ∈ M3 (C). Let Ker(M) be its kernel, and consider its projectivization
[Ker(M)\{0}]. ThenM induces awell definedmap [M] : CP

2\ [Ker(M)\{0}] → CP
2

given by [M] (z) = [Mz]. We say that M is a quasi-projective map. We define the
space of quasi-projective maps QP (3, C) as

QP (3, C) = (M3 (C) \{0}) /C
∗.

This space is the closure of PSL (3, C) in the spaceM3 (C). Therefore every sequence
of elements in PSL (3, C) converge to an element of QP (3, C) (see Section 3 of Cano
and Seade 2010 or Section 7.4 of Cano et al. 2013). We denote by Diag(a1, a2, a3)
the diagonal element of QP (3, C) with diagonal entries a1, a2, a3.
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As in the case of automorphisms of CP
1, we classify the elements of PSL (3, C) in

three classes: elliptic, parabolic and loxodromic. However, unlike the classical case,
there are several subclasses in each case (see Section 4.2 of Cano et al. 2013). We now
give a quick summary of the subclasses of elements we will be using.

Definition 1 An element g ∈ PSL (3, C) is said to be:

– Elliptic if it has a diagonalizable lift in SL (3, C) such that every eigenvalue has
norm 1.

– Parabolic if it has a non-diagonalizable lift in SL (3, C) such that every eigenvalue
has norm 1.

– Loxodromic if it has a lift in SL (3, C) with an eigenvalue of norm distinct of 1.
Furthermore, we say that g is:

– Loxo-parabolic if it is conjugate to an element h ∈ PSL (3, C) such that

h =
⎛

⎝
λ 1 0
0 λ 0
0 0 λ−2

⎞

⎠ , |λ| 
= 1.

– A complex homothety if it is conjugate to an element h ∈ PSL (3, C) such that
h = Diag

(
λ, λ, λ−2

)
, with |λ| 
= 1.

– A rational (resp. irrational) screw if it is conjugate to an element h ∈
PSL (3, C) such that h = Diag (λ1, λ2, λ3), with |λ1| = |λ2| 
= |λ3| and
λ1λ

−1
2 = e2π iθ with θ ∈ Q (resp. θ ∈ R\Q).

– Strongly loxodromic if it is conjugate to an element h ∈ PSL (3, C) such
that h = Diag (λ1, λ2, λ3), where the elements {|λ1|, |λ2|, |λ3|} are pairwise
different.

We say that z ∈ C\{1} is a rational rotation (resp. irrational rotation) if z = e2π iθ

for some θ ∈ Q (resp. θ ∈ R\Q). An element γ ∈ Γ is called a torsion element if it
has finite order. The group Γ is a torsion-free group if the only torsion element in Γ

is the identity.
In the classical case of Kleinian groups, there are several characterizations for the

concept of limit set, and all of them coincide (Matsuzaki and Taniguchi 1998). In the
complex setting there is no unique definition of limit set (for a detailed discussion and
examples see Section 3.1 of Cano et al. 2013). Kulkarni (1978) introduced a notion of
limit set which works in a very general setting (Section 3.3. of Cano et al. 2013).

Definition 2 Let Γ be a discrete subgroup of PSL (3, C) acting on CP
2. Let us define

the following sets:

– Let L0(Γ ) be the closure of the set of points inCP
2 with infinite group of isotropy.

– Let L1(Γ ) be the closure of the set of accumulation points of orbits of points in
CP

2\L0(Γ ).
– Let L2(Γ ) be the closure of the set of accumulation points of orbits of compact
subsets of CP

2\ (L0(Γ ) ∪ L1(Γ )).

We define the Kulkarni limit set of Γ as ΛKul(Γ ) := L0(Γ ) ∪ L1(Γ ) ∪ L2(Γ ). The
Kulkarni region of discontinuity of Γ is defined as ΩKul(Γ ) := CP

n\ΛKul(Γ ).
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The action of Γ onΩKul(Γ ) is proper and discontinuous (Section 3.2 of Cano et al.
2013).

Definition 3 The equicontinuity region for a familiy Γ of automorphisms of CP
2,

denoted Eq(Γ ), is defined to be the set of points z ∈ CP
2 for which there is an open

neighborhood U of z such that Γ restricted to U is a normal family.

The following propositions will be very useful to compute the Kulkarni limit set of
a group in terms of the quasi-projective limits of sequences in the group.

Proposition 1 (Proposition 7.4.1 of Cano et al. 2013) Let {γk} ⊂ PSL (3, C) be a
sequence of distinct elements, then there is a subsequence of {γk}, still denoted by

{γk}, and a quasi-projective map γ ∈ QP (3, C) such that γk
k→∞−→ γ uniformly on

compact sets of CP
2\ [Ker(γ )

]
.

Proposition 2 (Proposition 2.5 of Cano et al. 2017) Let Γ ⊂ PSL (3, C) be a group,
we say γ ∈ QP (3, C) is a limit of Γ , in symbols γ ∈ Lim(Γ ), if there is a sequence
{γm} ⊂ Γ of distinct elements satisfying γm → γ . Then

Eq(Γ ) = CP
2\

⋃

γ∈Lim(Γ )

Ker(γ ).

Proposition 3 (Corollary 2.6 of Cano et al. 2017) Let Γ ⊂ PSL (3, C) be a discrete
group, then Γ acts properly discontinuously on Eq(Γ ). Moreover, Eq(Γ ) ⊂ ΩKul(Γ ).

2.2 Solvable Groups

Definition 4 Let G be a group. The derived series {G(i)} of G is defined inductively
as

G(0) = G, G(i+1) = [
G(i),G(i)

]
.

One says that G is solvable if for some n ≥ 0, we have G(n) = {id}.
The following are examples of solvable subgroups of PSL (3, C). These groups

will be used later as they appear as subgroups of control groups.

Example 1 – Denote by Rot∞ ⊂ PSL (2, C) the group of all rotations around the
origin, then the infinite dihedral group Dih∞ = 〈Rot∞, z �→ −z〉 is solvable.

– The special orthogonal group,

SO(3) =
{[

a −c
c a

] ∣
∣
∣ |a|2 + |c|2 = 1

}

⊂ PSL (2, C)

is not solvable.

The next theorem is known as the topological Tits alternative (Theorem 1 of Tits
1972 or Theorem 1.3 of Breuillard and Gelander 2007).
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Theorem 3 Let K be a local field and let Γ ⊂ GL(n, K ) be a subgroup. Then either
Γ contains an open solvable group, or Γ contains a dense free subgroup.

Theorem 4 (Theorem 3.6 ofWehrfritz 1973)Let G ⊂ GL (3, C) be a discrete solvable
subgroup, then G is virtually triangularizable.

3 Non-commutative Triangular Groups

In this section, we provide a dynamic description of non-commutative upper triangular
discrete subgroups of PSL (3, C). We also give a decomposition theorem of non-
commutative subgroups of U+ (Theorems 5 and 8). Sections 3.1 and 3.2 consist of
results needed for the proofs of the main theorems of this section.

3.1 Restrictions on the Elements of a Non-commutative Group

In this section we study the restrictions that irrational screws, irrational ellipto-
parabolic elements and complex homotheties impose on the groups they belong to.
We show that if a discrete subgroup Γ ⊂ U+ contains an irrational screw, an irrational
ellipto-parabolic element or a complex homothety, then Γ has to be commutative.

These technical results, along with Sect. 3.2 will be important to prove the main
theorems in Sects. 3.3 and 3.4. Also, these propositions generalize the results presented
in Chapter 5 of González-Urquiza (2018).

The following class of elements will be used often. So, for the sake of simplicity,
let us denote

hx,y =
⎡

⎣
1 0 x
0 1 y
0 0 1

⎤

⎦ , x, y ∈ C.

We will use the following argument several times throughout the paper. We state it
as Lemma 1, whose proof is a straightforward calculation.

Lemma 1 Let α = [
αi j

]
, β

[
βi j

] ∈ U+\{id} be two distinct elements. We denote by
α1 and α2 (resp. β1 and β2) the upper left and lower right 2× 2 blocks of α (resp. β),

α1 =
[

α11 α12
0 α22

]

, α2 = Π(α) =
[

α22 α23
0 α33

]

.

If we regard αi and βi as elements of PSL(2, C), then

Fix(α1) = {e1, [α12 : α22 − α11]} and Fix(α2) = {e1, [α23 : α33 − α22]},

analogously for Fix(β1) and Fix(β2). Also,

Fix(αi ) = Fix(βi ) ⇔ [αi , βi ] = id.
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We first consider the case of irrational screws.

Proposition 4 Let γ ∈ U+ be an irrational screw given by

γ = Diag(β−2e−6π iθ , βe4π iθ , βe2π iθ ),

for some |β| 
= 1 and θ ∈ R\Q. Let α ∈ U+\〈γ 〉. If 〈α, γ 〉 is discrete, then α is
diagonal.

Proof Let γ, α ∈ U+ be as in the statement of the proposition, and assume, without
loss of generality, that |β| > 1. Let us denote α = [

αi j
]
, and suppose that α is not

diagonal. Since θ ∈ R\Q, there is a sequence such that e2kπ iθ → 1. Consider the
sequence {μk := γ −kαγ k} ⊂ 〈α, γ 〉. Since α not diagonal, then α12 
= 0, α13 
= 0 or
α23 
= 0. Therefore, {μk} is a sequence of distinct elements such that

μk →
⎡

⎣
α11 0 0
0 α22 α23
0 0 α33

⎤

⎦ ∈ PSL (3, C) .

Then 〈α, γ 〉 is not discrete since it contains a sequence of distinct elements {μk}
converging to an element of PSL (3, C). ��

We have the following immediate consequence of Proposition 4.

Corollary 1 Let Γ ⊂ U+ be a discrete subgroup. Let γ ∈ Γ be an irrational screw as
in Proposition 4, then Γ is commutative.

Corollary 2 Let Γ ⊂ U+ be a discrete subgroup such that Σ = Π(Γ ) is non-discrete
and Σ = Rot∞. Then Γ is commutative.

Proof The elements of Σ have the form Π(γ ) = Diag
(
e2π iθ , e−2π iθ

)
. Then every

element of Γ \{id} is diagonalizable and therefore, it is an irrational screw. Then Γ

contains only screws. If there were a rational screw γ ∈ Γ then λ23(Γ )would not be a
torsion-free group. Then Γ contains only irrational screws, it follows from Corollary
1 that Γ is commutative.

The following is an immediate consequenceofLemma5.10ofBarrera et al. (2018a).

Proposition 5 Let Γ ⊂ U+ be a discrete group containing an irrational ellipto-
parabolic element γ with one of the following two forms:

γ =
⎡

⎣
e−4π iθ β γ

0 e2π iθ μ

0 0 e2π iθ

⎤

⎦ , γ =
⎡

⎣
e2π iθ β γ

0 e2π iθ μ

0 0 e−4π iθ

⎤

⎦

μ 
= 0 β 
= 0

,

with θ ∈ R\Q. Then Γ is commutative.
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Before stating the next lemma, we define the limit set in the sense of Greenberg for
the action of a non-discrete subgroup of PSL(2, C) (see Definition 2.2 of Cano and
Seade 2014 and Section 4 of Greenberg 1962).

Definition 5 Identify PSL(2, C) with Iso+H
3, the group of all orientation preserving

isometries of the real hyperbolic space H
3, and think of S

2 as the sphere at infinity
of H

3. Let G be a (discrete or not) subgroup of PSL(2, C). Its Greenberg limit set,
denoted ΛGr(G), is defined to be the intersection of S

2 with the set of accumulation
points of all orbits of points in H

3.

Lemma 2 Let Γ ⊂ U+ be a torsion-free, non-commutative, discrete group such that
Σ = Π(Γ ) is not discrete. Then ΛGr(Σ) 
= ∅.
Proof Let us suppose that ΛGr(Σ) = ∅. According to Theorem 1.14 of Cano and
Seade (2014), we have two possibilities:

(i) Σ = SO(3). Since Γ is solvable, Σ is solvable. However SO(3) is not solvable.
(ii) Σ = Dih∞ or Σ = Rot∞. Observe that Σ ∩ Rot∞ 
= ∅, otherwise Σ would

be discrete. Let Π(γ ) ∈ Σ ∩ Rot∞, then Π(γ ) = Diag
(
e2π iθ , e−2π iθ

)
. Since

λ23(Γ ) is a torsion-free group, it follows θ ∈ R\Q, and then γ is an irrational
screw. Conjugating γ by a suitable element of PSL (3, C) and applying Corollary
2, Γ would be commutative.

These contradictions verify the lemma. ��
Now, we study complex homotheties. For the rest of the paper, we will say that γ ∈

PSL (3, C) is a type I complex homothety if, up to conjugation, γ = Diag(λ−2, λ, λ)

for some λ ∈ C
∗ with |λ| 
= 1.

Proposition 6 Let γ ∈ PSL (3, C) be a type I complex homothety. Let α ∈ U+\〈γ 〉
be an element such that α is neither a complex homothety nor a screw, then the group
〈α, γ 〉 is discrete if and only if α leaves ΛKul(γ ) invariant.

Proof We have that ΛKul(γ ) = {e1} ∪ ←−→e2, e3 (Proposition 4.2.23 of Cano et al. 2013).
Denote α = [

αi j
]
, a straightforward calculation shows that α leaves ←−→e2, e3 invariant

if and only if α12 = α13 = 0.
First we prove that if 〈α, γ 〉 is discrete then α leavesΛKul(γ ) invariant. Assume that

α doesn’t leaveΛKul(γ ) invariant, this means that |α12|+|α13| 
= 0. Let {gn} ⊂ 〈α, γ 〉
be the sequence of distinct elements given by gn := γ nαγ −n . Clearly,

gn →
⎡

⎣
α11 0 0
0 α22 α23
0 0 α33

⎤

⎦ ∈ PSL (3, C) .

Therefore 〈α, γ 〉 is not discrete.
Nowwe prove that if α leavesΛKul(γ ) invariant, then 〈α, γ 〉 is discrete. We rewrite

γ = Diag(λ−3, 1, 1). Suppose that 〈α, γ 〉 is not discrete, then there exists a sequence
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of distinct elements {wk} ⊂ 〈α, γ 〉 such that wk → id. Since α leaves ΛKul(γ )

invariant, then

α =
⎡

⎣
α11 0 0
0 α22 α23
0 0 α33

⎤

⎦ ,

and therefore
[
α, γ

] = id. Then the sequence wk can be expressed as

wk = γ ikα jk . (1)

Observe that hγ h−1 = γ for any h ∈ PSL (3, C) of the form

h =
⎡

⎣
h11 0 0
0 h22 h23
0 0 h33

⎤

⎦ .

Furthermore, there exists an element h ∈ PSL (3, C) with the previous form such that
hαh−1 has one of the following forms:

1.

hαh−1 = Diag
(
α−1
22 α−1

33 , α22, α33

)

if Π(α) is loxodromic. In this case, from the previous equation and (1) it follows

wk = Diag
(
λ−3ikα

− jk
22 α

− jk
33 , α

jk
22, α

jk
33

)
→ id. Therefore α

jk
22, α

jk
33 → 1, but then

we cannot have λ−3ikα
− jk
22 α

− jk
33 → 1, since |λ| 
= 1.

2.

hαh−1 =
⎡

⎣
α11 0 0
0 1 1
0 0 1

⎤

⎦ ,

if Π(α) is parabolic. Then we have

wk =
⎡

⎣
λ−3ikα

jk
11 0 0

0 1 1
0 0 1

⎤

⎦ → id.

But this cannot happen.
3. hαh−1 = Diag (α11, α22, α22), with |α22| = 1, if Π(α) is elliptic. But in this case

α is a complex homothety or a screw.

Therefore neither of the three cases can occur and thus, 〈α, γ 〉 is discrete. ��
From the proof of the previous proposition, we have the following immediate con-

sequence.
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Corollary 3 If Γ ⊂ U+ is a discrete subgroup, and Γ contains a type I complex
homothety as in the previous proposition, then every element of Γ has the form

α =
⎡

⎣
α11 0 0
0 α22 α23
0 0 α33

⎤

⎦ . (2)

Proposition 7 LetΓ ⊂ U+ be a discrete group containing a type I complex homothety.
If the control group Π(Γ ) is discrete, then both conclusions hold:

1. Π(Γ ) is purely parabolic or purely loxodromic.
2. Γ is commutative.

Proof Using Corollary 3 we know that every element of Γ has the form given by (2).
Denote the control group by Σ = Π(Γ ):

1. If Σ contains an elliptic element Π(α) = Diag
(
e2π iθ1 , e2π iθ2

)
, then α =

Diag
(
e−2π i(θ1+θ2), e2π iθ1 , e2π iθ2

) ∈ Γ is elliptic. If α has infinite order, this
contradicts that Γ is discrete and if α has finite order, this contradicts that Γ

is torsion-free. Therefore, Σ has no elliptic elements.
2. If Σ has a parabolic element Π(α) then Σ is purely parabolic. Otherwise, there

exists β ∈ Γ such that Π(β) is loxodromic and then, using the Jørgensen
inequality, it would follow that 〈Π(α),Π(β)〉 ⊂ Σ is not discrete. Then Γ is
commutative, since every element of Γ has the form

α =
⎡

⎣
α11 0 0
0 1 α23
0 0 1

⎤

⎦ .

3. IfΣ has a loxodromic elementΠ(α), thenΣ is purely loxodromic (see the previous
case). Let β ∈ Γ \{α}, then Π(β) is loxodromic. Since both Π(α) and Π(β) are
upper triangular elements, they share at least one fixed point. We have two cases:

(a) If Π(α) and Π(β) share exactly one fixed point, then they have the form

Π(α) =
[

α22 α23
0 α33

]

, Π(β) =
[

β22 β23
0 β33

]

with α23, β23 
= 0 and [α23 : α33 − α22] 
= [β23 : β33 − β22]. Then
[Π(α),Π(β)] 
= id is parabolic, contradicting that Σ is purely loxodromic.

(b) If Fix(Π(α)) = Fix(Π(β)), thenΠ(α) andΠ(β) commute (Lemma 1). Since
every element of Γ has the form given by (2), it follows that α and β commute,
and thus, Γ is commutative.

��
Proposition 8 Let Γ ⊂ U+ be a discrete group such that Σ = Π(Γ ) is not discrete
and ΛGr (Σ) = S

1. Then Γ cannot contain a type I complex homothety.
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Proof Suppose that Γ contains such a complex homothety. Corollary 3 states that
each element in Γ has the form given in (2). Since ΛGr (Σ) = S

1, then Γ is a non-
elementary, non-discrete group, and since ΛGr (Σ) is the closure of fixed points of
loxodromic elements of Σ , then there are an infinite number of loxodromic elements
in Σ sharing exactly one fixed point. Let f ∈ Σ such that Π( f ) is loxodromic
and f = Diag

(
α−1, α, 1

)
, with |α| < 1. Let γ1, γ2 ∈ Γ be two elements such

that Π(γ1),Π(γ2) are loxodromic and share exactly one fixed point, also γi 
= f , for
i = 1, 2. It follows that γ := [

γ1, γ2
] 
= id is a parabolic element. Let { f kγ f −k} ⊂ Γ

be the sequence given by f kγ f −k = h0,y , where y = αkb0 and b0 is the entry 23 of
γ . Then f kγ f −k → id, contradicting that Γ is discrete. If |α| > 1, we consider the
sequence { f −kγ f k} instead. This concludes the proof. ��
Proposition 9 LetΓ ⊂ U+ beanon-commutative discrete group such thatΣ = Π(Γ )

is not discrete and |ΛGr(Σ)| = 2. Then Γ cannot contain a type I complex homothety.

Proof Suppose that Γ contains such a complex homothety. Then, by Corollary 3, each
element in Γ has the form given by (2). If |ΛGr(Σ)| = 2, then, up to conjugation,
every element of Σ has the form Diag(β, δ) for some β, δ ∈ C

∗. Then, using (2), it
follows that each element in Γ is diagonal and hence, Γ would be commutative. ��
Proposition 10 Let Γ ⊂ U+ be a non-commutative discrete group such that Σ =
Π(Γ ) is not discrete and |ΛGr(Σ)| = 1. Then Γ cannot contain a type I complex
homothety.

Proof Suppose that there exists such a complex homothety γ ∈ Γ . Corollary 3 implies
that each element in Γ has the form given by (2). SinceΣ = Π(Γ ) is not discrete and
|ΛGr(Σ)| = 1, then Σ is a dense subgroup of Epa (C) containing parabolic elements
(Theorem 2.14 of Cano and Seade 2014). Then every element of Σ has the form

Π(μ) =
[
a b
0 a−1

]

, for |a| = 1 and b ∈ C
∗.

This implies that every element of Γ has the form

μ =
⎡

⎣
α−2 0 0
0 αa αb
0 0 αa−1

⎤

⎦ , for some α ∈ C
∗.

We have two possibilities:

1. If every element of Σ is parabolic, then Γ would be commutative. This is because
every element of Γ \{id} has the form

μ =
⎡

⎣
α−2 0 0
0 α αb
0 0 α

⎤

⎦ , for some α ∈ C
∗.

123



The Dynamics of Solvable...

2. If there is an elliptic element Π(γ ) ∈ Σ , then Π(γ ) = Diag
(
e2π iθ , e−2π iθ

)
, for

some θ /∈ Z. Then

γ = Diag
(
β−2, βe2π iθ , βe−2π iθ

)
, for some β ∈ C

∗. (3)

Observe that, if θ ∈ Q, then λ23(γ ) = e4π iθ would be a torsion element in
λ23(Γ ). This contradictions implies that, if there exists an elliptic element in Σ ,
then θ ∈ R\Q. On the other hand, since Σ is not discrete, there is a sequence of
distinct elements {Π(μk)} ⊂ Σ such that Π(μk) → id. We have two cases:

(i) If {Π(μk)} contains an infinite number of parabolic elements, then consi-
dering an adequate subsequence, we can assume that {Π(μk)} is a sequence
of distinct parabolic elements. Let us denote

Π(μk) =
[
1 bk
0 1

]

where {bk} ⊂ C
∗ is a sequence of distinct elements such that bk → 0. Then

μk =
⎡

⎣
α−2
k 0 0
0 αk αkbk
0 0 αk

⎤

⎦ , for some {αk} ⊂ C
∗.

Let {ξk} ⊂ Γ be the sequence of distinct elements given by ξk = [
γ, μk

] =
h0,y , where y = bk

(
1 − e−4π iθ

)
and γ is an elliptic element in Σ given by

(3). Then ξk → id, contradicting that Γ is discrete.
(ii) If {Π(μk)} contains only a finite number of parabolic elements, then we can

assume that the whole sequence {Π(μk)} is made up of irrational elliptic
elements. We denote

Π(μk) =
[
e2π iθk bk
0 e−2π iθk

]

,

with bk → 0. Since {θk} ⊂ R\Q, we can pick an adequate subsequence
of {Π(μk)}, still denoted in the same way, such that θk → 0 by distinct
elements {θk}. Let {Π(σk)} ⊂ Σ be the sequence of distinct elements given by
Π(σk) = [

Π(μk),Π(μk+1)
]
. This sequence is made up of distinct parabolic

elements of Σ , and since θk → 0, we have that Π(σk) → id. Applying the
same argument as in the previous case (i), we get a contradiction.

��
Together, Lemma 2 and Propositions 7, 8, 9, 10 imply the following conclusion.

Corollary 4 Let Γ ⊂ U+ be a non-commutative, torsion-free discrete subgroup, then
Γ cannot contain a type I complex homothety.
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Proposition 11 Let Γ ⊂ U+ be a non-commutative, torsion-free discrete group. If
Ker(Γ ) is finite, then Ker(Γ ) = {id}.
Proof Let Γ ⊂ U+ be a non-commutative, torsion-free discrete group. Let γ ∈
Ker(Γ ), and assume that γ 
= id. Then γ has the form

γ =
⎡

⎣
α−2 x y
0 α 0
0 0 α

⎤

⎦ ,

for some x, y ∈ C and α ∈ C
∗ such that either |x |+|y| 
= 0 or α 
= 1. If |x |+|y| 
= 0,

we can form the sequence of distinct elements {γ k} ⊂ Ker(Γ ) contradicting that
Ker(Γ ) is finite. If α 
= 1, we have two possibilities: |α| 
= 1 or α = e2π iθ for
some θ /∈ Z. The former implies that γ is a complex homothety, thus contradicting
Corollary 4. The latter implies that either α is an irrational rotation (contradicting that
Γ is discrete) or λ12(γ ) is a torsion element (contradicting that Γ is a torsion-free
group). Therefore, Ker(Γ ) = {id}. ��
Lemma 3 LetΣ be a non-discrete, upper triangular subgroup of PSL (2, C) such that
ΛGr (Σ) = S

1. Then the parabolic part of Σ is a non-discrete group.

Proof Let Σp be the parabolic part of Σ . Let g ∈ Σ be a loxodromic element such
that g = Diag

(
α, α−1

)
for some |α| < 1. Let h1, h2 ∈ Σ be two loxodromic elements

such that Fix(h1) 
= Fix(h2) and Fix(hi ) 
= Fix(g). Let h = [h1, h2], then h 
= id is a
parabolic element in Σ . Hence fk := gkhg−k → id, and therefore Σ is not discrete.
The fact that one can take the elements g, h1, h2 is a consequence of ΛGr (Σ) = S

1.
��

3.2 The Core of a Group

In this sectionwedefine and study an important purely parabolic subgroupof a complex
Kleinian group Γ which determines the dynamics of Γ . This subgroup will be called
the core ofΓ .We state and prove several technical results whichwill play an important
role in the proofs of the main theorems of Sects. 3.3 and 3.4. Let us define

Core(Γ ) = Ker(Γ ) ∩ Ker(λ12) ∩ Ker(λ23).

The following proposition describes the elements of the Core(Γ ).

Proposition 12 The elements of Core(Γ ) have the form

gx,y =
⎡

⎣
1 x y
0 1 0
0 0 1

⎤

⎦ ,

for some x, y ∈ C.
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Proof Let γ = [
γi j

] ∈ Core(Γ ). Since γ ∈ Ker(Γ ), it follows that γ23 = 0 and
γ22 = γ33 = γ −2

11 . Therefore, γ has the form:

γ =
⎡

⎣
α−2 γ12 γ13
0 α 0
0 0 α

⎤

⎦ ,

for some α ∈ C
∗. Since γ ∈ Ker(λ12), it follows that α−2 = α, and

γ =
⎡

⎣
α γ12 γ13
0 α 0
0 0 α

⎤

⎦ =
⎡

⎣
1 α−1γ12 α−1γ13
0 1 0
0 0 1

⎤

⎦ .

Therefore, γ = gα−1γ12,α−1γ13
. It is straightforward to verify that gx,y ∈ Core(Γ ) for

any x, y ∈ C. ��
We will use the notation of Proposition 12 for the rest of the work. It is straightfor-

ward to verify that ΛKul (Core(Γ )) = ⋃
gx,y∈Core(Γ )

←−−−−−−−−→
e1, [0 : −y : x]. We denote this

pencil of lines by C(Γ ) = ΛKul (Core(Γ )).

Proposition 13 Let Γ ⊂ U+ be a discrete group, then every element of Γ leaves C(Γ )

invariant.

Proof For gx,y ∈ Core(Γ ), denote by �x,y = ←−−−−−−−−→
e1, [0 : −y : x] ⊂ C(Γ ) the line deter-

mined by the element gx,y . Let γ = [
γi j

] ∈ Γ , observe that

γ gx,yγ
−1 = g γ11

γ22
x,

γ11
γ22γ33

(γ22 y−γ23x)
∈ Core(Γ ).

This element determines the line �γ33x,γ22 y−γ23x . Therefore, this is a line in C(Γ ). On
the other hand, a direct calculation shows that γ (�x,y) = �γ33x,γ22 y−γ23x . This proves
that γ leaves C(Γ ) invariant. ��

We have shown that every element γ ∈ Γ moves the line �x,y to the line γ (�x,y)

according to the proof of the last proposition, also, the line ←−→e1, e2 is fixed by every
element of Γ . In particular, loxodromic elements leave C(Γ ) invariant. This inva-
riance imposes strong restrictions on these loxodromic elements.

We say that the discrete group Γ ⊂ U+ is conic if C(Γ ) is a cone homeomorphic
to the complement of C × (

H
+ ∪ H

−). If C(Γ ) is a line, we say that Γ is non-conic.
In Barrera et al. (2018a), conic groups are called irreducible, and non-conic groups,
reducible.

Proposition 14 Let Γ ⊂ U+ be a non-commutative discrete group such that one of
the following hypothesis hold:

– Its control group Σ = Π(Γ ) is discrete.
– Σ is not discrete and ΛGr(Σ) = S

1.
– Σ is not discrete and |ΛGr(Σ)| = 2.
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Then Ker(Γ ) = Core(Γ ).

Proof We only have to prove that Ker(Γ ) ⊂ Core(Γ ). Let γ ∈ Ker(Γ ), then

γ =
⎡

⎣
α−2 γ12 γ13
0 α 0
0 0 α

⎤

⎦ , for some α ∈ C
∗

– If |α| 
= 1, then γ is a complex homothety. Using the hypotheses and Propositions
7, 8 and 9, Γ would be commutative.

– If |α| = 1 but α 
= 1, then α = e2π iθ for some θ ∈ R\Q (otherwise, λ12(Γ )would
not be a torsion-free group). Then γ is a irrational ellipto-parabolic element, and
then Γ would be commutative (Proposition 5).

This contradictions imply that α = 1 and therefore, γ ∈ Core(Γ ). ��
The proof of the following corollary is similar to the proof of the previous propo-

sition.

Corollary 5 Under the hypotheses of the previous proposition, if

γ =
⎡

⎣
α−2 γ12 γ13
0 α γ23
0 0 α

⎤

⎦ ∈ Γ ,

then α = 1.

Proposition 15 Let Γ ⊂ U+ be a non-commutative, discrete group such that
|ΛGr(Π(Γ ))| = 2. Let � be a line passing through e1 such that � 
= ←−→e1, e2, � 
= ←−→e1, e3
and � ⊂ C(Γ ), then Γ is conic.

Proof If |ΛGr(Π(Γ ))| = 2, then up to conjugation, every element of Σ has the form
γ = Diag (β, δ), where |β| 
= |δ|. Then every element of Γ has the form

γ =
⎡

⎣
γ −1
22 γ −1

33 γ12 γ13
0 γ22 0
0 0 γ33

⎤

⎦ , with |γ22| 
= |γ33|. (4)

Let us assume that Γ is not conic, with C(Γ ) = �. Let [0 : −y : x] ∈ ←−→e2, e3 such
that � = �x,y , then, by hypothesis, x 
= 0 and y 
= 0. Since |Ker(Γ )| = ∞, using
Proposition 14 it follows that Ker(Γ ) = Core(Γ ). Since Ker(Γ ) is a normal subgroup
of Γ , so is Core(Γ ). Therefore, if γ = [

γi j
] ∈ Γ , then γ gx,yγ −1 = hx ′,y′ ∈ Core(Γ )

where x ′ = xγ −2
22 γ −1

33 and y′ = yγ −1
22 γ −2

33 . This element γ gx,yγ −1 determines the
same line �x,y in C(Γ ). Then

[
−yγ −1

22 γ −2
33 : xγ −2

22 γ −1
33

]
= [−y : x] ,

which means that γ22 = γ33, contradicting (4). This contradiction proves the propo-
sition. ��
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Proposition 16 Let W ⊂ C
2 be a non-empty andR-linearly independent set, consider

� = [
SpanZ(W )\{0}]. Then:

(i) If W has exactly one point or has exactly two points, which are C-linearly depen-
dent, then � is a single point.

(ii) If W has exactly two points, such that they are C-linearly independent, then � is a
real line in CP

1.
(iii) If W contains more that two points, then � = CP

1.

Proof If |W | = 1 or W has exactly two points, which are C-linearly dependent,
it follows trivially that � is a single point. If W has exactly two points, such that
they are C-linearly independent, we can assume that W = {(1, 0), (0, 1)}, then[
SpanZ(W )\{0}] ∼= Q and therefore � = R̂, which is a line in CP

1. Finally, if W
contains more that two points, we can assume that W = {(1, 0), (0, 1), (w1, w2)},
where w1, w2 
= 0. Then

� =
{
[k + nw1 : m + nw2]

∣
∣
∣ k,m, n ∈ Z

}
=
{
[r + sw1 : t + sw2]

∣
∣
∣ r , s, t ∈ R

}
.

Clearly [0 : 1] ∈ �. Let z ∈ C such that Im(z) 
= 0, denoting

r0 = Im(w2) − Re(z)Im(w1)

Im(z)
, s0 = 1, t0 = z(r + w1) − w2,

it follows that [1 : z] = [r0 + s0w1 : t0 + s0w2]. If Im(z) = 0, clearly [1 : z] ∈ �.
Therefore � = CP

1. ��

3.3 Decomposition of Non-commutative Discrete Groups of U+

In this section we state and prove the main theorem of this section. For the sake of
clarity, we will divide the theorem in two parts (Theorems 5 and 8).

Theorem 5 LetΓ ⊂ U+ be a non-commutative, torsion-free, complex Kleinian group,
then Γ can be written in the following way

Γ = Core(Γ ) � 〈ξ1〉 � · · · � 〈ξr 〉 � 〈η1〉 � · · · � 〈ηm〉 � 〈γ1〉 � · · · � 〈γn〉

where

λ23(Γ ) = 〈λ23(γ1), ..., λ23(γn)〉, n = rank (λ23(Γ )) .

λ12 (Ker(λ23)) = 〈λ12(η1), ..., λ12(ηm)〉, m = rank (λ12(Ker(λ23)) .

Π (Ker(λ12) ∩ Ker(λ23)) = 〈Π(ξ1), ...,Π(ξr )〉, r = rank (Π (Ker(λ12) ∩ Ker(λ23))) .

Proof We will divide the proof in three parts.
Part I: Decomposition of Γ in terms of Ker(λ23). Let Γ ⊂ U+ be a torsion-free

complex Kleinian group. Since Γ is triangular, it is finitely generated (see Auslander
1960), and therefore λ23(Γ ) is finitely generated. Let n = rank (λ23(Γ )), and let

123



M. Toledo-Acosta

{γ̃1, ..., γ̃n} ⊂ C
∗ be a generating set for λ23(Γ ). We choose elements γ1, ..., γn ∈ Γ

such that γi ∈ λ−1
23 (γ̃i ). Observe that

Γ = 〈Ker(λ23), γ1, ..., γn〉. (5)

Furthermore, we will prove that

Γ = ((Ker(λ23) � 〈γ1〉) � · · · ) � 〈γn〉. (6)

Sinceλ23 is a grouphomomorphism,Ker(λ23) is a normal subgroupofΓ , and therefore
it is a normal subgroup of 〈Ker(λ23), γ1〉. Now, assume that Ker(λ23) ∩ 〈γ1〉 is not
trivial, then there exist p ∈ Z such that γ p

1 ∈ Ker(λ23). If γ1 = [
ai j

]
, then the previous

assumption means that either a22 = a33 or a
p
22 = a p

33. In the latter case, this means,
without loss of generality that

a22a
−1
33 = ω, (7)

where ω is a p-th root of the unity, with p > 1. On the other hand, λ23(Γ ) ⊂ C
∗ is

a torsion-free group, it follows from (7) that a22a
−1
33 is a torsion element of λ23(Γ );

thus a22 = a33. If this is the case, then γ1 ∈ Ker(λ23), contradicting that λ23(γ1) = γ̃1
belongs to a generating set for λ23(Γ ). Thus, we can form the semi-direct product
Ker(λ23) � 〈γ1〉.

Nowwe verify that we can form the semi-direct product ((Ker(λ23) � 〈γ1〉))�〈γ2〉.
First, we verify that Ker(λ23)�〈γ1〉 is a normal subgroup of 〈Ker(λ23)�〈γ1〉, γ2〉. Let
g ∈ Ker(λ23) and consider arbitrary elements gγ n

1 ∈ Ker(λ23) � 〈γ1〉 and γm
2 ∈ 〈γ2〉,

then

γm
2

(
gγ n

1

)
γ −m
2 = (

γm
2 gγ −m

2

)

︸ ︷︷ ︸
Ker(λ23)�Γ

γm
2 γ n

1 γ −m
2 = g1 · (γm

2 γ n
1 γ −m

2

)

where g1 = γm
2 gγ −m

2 ∈ Ker(λ23). Since λ23
(
g1γm

2 γ n
1 γ −m

2

) = λ23
(
γ n
1

)
, we know

that there exists g2 ∈ Ker(λ23) such that g1γm
2 γ n

1 γ −m
2 = g2γ n

1 . Thus

γm
2

(
gγ n

1

)
γ −m
2 = g2γ

n
1 ∈ Ker(λ23) � 〈γ1〉.

Therefore Ker(λ23) � 〈γ1〉 is a normal subgroup of 〈Ker(λ23) � 〈γ1〉, γ2〉.
Now, we verify that (Ker(λ23) � 〈γ1)〉 ∩ 〈γ2〉 = {id}. Assume that there exist

p, q ∈ Z such that γ p
2 = gγ q

1 for some g ∈ Ker(λ23) with γ
p
2 
= id, then

γ
p
2 γ

−q
1 ∈ Ker(λ23) (8)

If we write γ1 = [
αi j

]
and γ2 = [

βi j
]
, then (8) yields

β22α
− q

p
22

(

β33α
− q

p
33

)−1

= ω, (9)
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where ω is a p-th root of the unity. Then (9) gives a torsion element in the torsion-free
group λ23(Γ ). This contradiction proves that

(Ker(λ23) � 〈γ1)〉 ∩ 〈γ2〉 = {id}.

This verifies that we can define the semi-direct product (Ker(λ23) � 〈γ1〉) � 〈γ2〉.
Analogously, we can form the semi-direct product ((Ker(λ23) � 〈γ1〉) � · · · ) � 〈γn〉.
For the sake of clarity, we will just write Ker(λ23) � 〈γ1〉 � · · · � 〈γn〉 instead. Using
(5) we have proven (6).

Part II: Decompose Ker(λ23) in terms of Ker(λ12). Now, consider the restric-
tion λ12 : Ker(λ23) → C

∗ still denoted by λ12. Again, λ12 (Ker(λ23)) is finitely
generated, and let m be its rank. Let {η̃1, ..., η̃m} be a generating set, we choose
elements ηi ∈ λ−1

12 (η̃i ). Denote A = Ker(λ12) ∩ Ker(λ23), and observe that
Ker(λ23) = 〈A, η1, ..., ηm〉. Every element of A has the form

⎡

⎣
1 x y
0 1 z
0 0 1

⎤

⎦ .

Since A is the kernel of the morphism λ12, A is a normal subgroup of 〈A, η1〉.
Nowsuppose that A∩〈η1〉 is not trivial, letηp

1 ∈ Awithη
p
1 
= id.Denoteη1 = [

ai j
]
,

since η
p
1 ∈ A it must hold a p

11 = a p
22 = a p

33. This means that a11a
−1
22 = ω, where

either ω 
= 1 is a p-th root of unity or ω = 1. In the former, a11a
−1
22 is a torsion

element in λ12 (Ker(λ23)), which is a torsion-free group. If ω = 1 then a11 = a22
and since η1 ∈ Ker(λ23), then a22 = a33. It follows that a11 = a22 = a33 and thus,
η1 ∈ A which contradicts that η1 is part of the generating set. All this proves that
A ∩ 〈η1〉 = ∅. This guarantees that we can form the semi-direct product A � 〈η1〉.

Now we verify that we can make the semi-direct product with 〈η2〉. The same
argument used in part I to prove normality when we added γ2 to Ker(λ23) � 〈γ1〉
can be applied in the same way now to prove that A � 〈η1〉 is a normal subgroup of
〈A� 〈η1〉, η2〉 and that (A � 〈η1〉)∩ 〈η2〉 is trivial. Using this argument for η3, ..., ηm
we get,

Ker(λ23) = A � 〈η1〉 � · · · � 〈ηm〉. (10)

Part III: Decompose A in terms of Ker(Γ ). Consider the restriction Π : A →
PSL (2, C). As before, Core(Γ ) it is a normal subgroup of Γ . Since A is solv-
able, it is finitely generated and so is Π(A) ⊂ PSL (2, C); denote by r its rank.
Let {ξ̃1, ..., ξ̃r } ⊂ Π(A) be a generating set for Π(A), choose ξi ∈ ξ̃−1

i ⊂ A,
then A = 〈Core(Γ ), ξ1, ..., ξr 〉. Observe that Core(Γ ) is a normal subgroup of
〈Core(Γ ), ξ1〉. Assume that Core(Γ ) ∩ ξ1 is not trivial, then ξ

p
1 ∈ Core(Γ ) for some

p ∈ Z\{0}. Since ξ1 ∈ A, we write

ξ1 =
⎡

⎣
1 x y
0 1 z
0 0 1

⎤

⎦ .
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Then

ξ
p
1 =

⎡

⎣
1 x ′ y′
0 1 pz
0 0 1

⎤

⎦ , for some x ′, y′ ∈ C.

Observe that ξ p
1 ∈ Core(Γ ) if and only if z = 0,which contradicts that ξ̃1 is a generator

ofΠ(A). Thenwecan form the semi-direct productCore(Γ )�〈ξ1〉.Observe thatΠ(A)

is a commutative subgroup of PSL (2, C), then we can apply the same argument we
used when we formed the semi-direct product with λ2 to conclude that Core(Γ )�〈ξ1〉
is a normal subgroup of 〈Core(Γ ) � 〈ξ1〉, ξ2〉. This concludes the proof of the first
part of the theorem. ��

Before proving Theorem 8, we state some results that will be used in its proof.

Proposition 17 (Chapter 2 of Waldschmidt 1994) The closed subgroup H ⊂ R
n is

additive if and only if

H ∼= R
p ⊕ Z

q

with non-negative integers p, q such that p + q ≤ n.

Theorem 6 (Theorem 1 of Bestvina et al. 2002b) Let Γ be a group acting properly
and discontinuously on a contractible manifold of dimension m, then obdim(Γ ) ≤ m.

In the statement of the previous Theorem, obdim(Γ ) is called the obstructor dimen-
sion. It satisfies the following properties (see Corollary 27 of Bestvina et al. 2002b
and Bestvina and Feighn 2002a respectively):

– If Γ = H � Q with H and Q finitely generated and H weakly convex, then

obdim(Γ ) ≥ obdim(H) + obdim(Q).

– If Γ = Z
n , then obdim(Zn) = n.

We will use the following notation in Theorems 7, 8 and Corollary 6. For a non-
commutative, torsion-free, complex Kleinian group Γ ⊂ U+ we denote

k = rank (Core(Γ )) ,

r = rank (Π (Ker(λ12) ∩ Ker(λ23))) ,

m = rank (λ12(Ker(λ23)) ,

n = rank (λ23(Γ )) .

Some of this notation is taken from Theorem 5. Using the previous properties of
the obstructor dimension and Theorem 5, we have the following reformulation of
Theorem 6.
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Theorem 7 Let Γ ⊂ U+ be a non-commutative, torsion-free, complex Kleinian group
acting properly and discontinuously on a simply connected domain Ω ⊂ CP

2, then
k + r + m + n ≤ 4.

The strategy to prove Theorem 8 will be to find a simply connected domain Ω ⊂
CP

2 where Γ acts properly and discontinuously, and then apply Theorem 7. In some
cases, we will write the explicit decomposition of Γ and verify that rank(Γ ) ≤ 4.

Theorem 8 LetΓ ⊂ U+ be a non-commutative, torsion-free, complex Kleinian group,
then rank(Γ ) ≤ 4. Furthermore, k + r + m + n ≤ 4.

Proof We denote Σ = Π(Γ ). Observe that

rank(Γ ) ≤ k + r + m + n. (11)

The proof of this theorem will require several cases and subcases, each one of them
will have a unique label so it can be referenced when needed. For the sake of clarity,
we will only give details for the most representative cases, for further details, see
Toledo-Acosta (2019).

We will divide the proof in three main cases:

(i) Σ is discrete, and Ker(Γ ) is finite.
(ii) Σ is discrete, and Ker(Γ ) is infinite.
(iii) Σ is not discrete.

(i) Assume that Σ is discrete and Ker(Γ ) is finite. If |Λ(Σ)| 
= 2, let

Ω =
⎛

⎝
⋃

z∈Ω(Σ)

←→e1, z

⎞

⎠ \{e1}.

Using Theorem 5.8.2 of Cano et al. (2013) we know that Γ acts properly and
discontinuously on Ω . If |Λ(Σ)| = 0, 1 or ∞, then each connected component of
Ω is simply connected, since they are respectively homeomorphic to CP

2, C
2 or

C × H. Using Theorem 7 it follows k + r + m + n ≤ 4.
If |Λ(Σ)| = 2, then Σ is elementary. Therefore, it is a cyclic group generated
by a loxodromic element, and then Σ ∼= Z. On the other hand, Ker(Γ ) = {id}
(Proposition 11), thenΠ : Γ → Σ is a group isomorphism, and thenΓ ∼= Σ ∼= Z.
Therefore, rank(Γ ) = 1.

(ii) Now, let us assume that Σ is discrete and Ker(Γ ) is infinite. Then, Core(Γ ) is
infinite (Proposition 14), which means that there exist elements gx,y ∈ Core(Γ ),
with gx,y 
= id. Denote B(Γ ) = π (C(Γ )\{e1}), then B(Γ ) ∼= S

1 or it is a
single point (Proposition 16). On the other hand, consider a sequence of distinct
elements {μk} ⊂ Γ . Since Σ is discrete, the sequence {Π(μk)} is either constant
or converges, by distinct elements, to a quasi-projective map in QP (2, C). In the
latter case, Σ is elementary and then, we have three possibilities (Theorem 1.6 of
Series 2005):
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[e1] Σ = 〈h〉, with h a loxodromic element.
[e2] Σ = 〈h〉, with h a parabolic element.
[e3] Σ = 〈g, h〉, with g, h parabolic elements with different translation direc-
tions.

Depending on whether Γ is conic or not, we have the two cases:

[con] Γ is conic, thenB(Γ ) ∼= S
1. DefineΩ(Γ ) = CP

2\C(Γ ). We will verify
that Γ acts properly and discontinuously on Ω(Γ ) using an argument which
will be used several times through this proof. Let K ⊂ Ω(Γ ) be a compact

set, denote K =
{
γ ∈ Γ

∣
∣
∣ γ (K ) ∩ K 
= ∅

}
, and assume that |K| = ∞. Then

we can write K = {γ1, γ2, ...}. Consider the sequence of distinct elements
{γk} ⊂ Γ , and the sequence {Π(γk)} ⊂ Σ . Let σ ∈ QP (2, C) be the quasi-
projective limit of {Π(γk)}, then Ker(σ ), Im(σ ) ⊂ B(Γ ).
By definition, π(K ) ∩ B(Γ ) = ∅, and then Proposition 1 implies that
Π(γk)(π(K )) accumulates on e1 (observe that we are considering this e1 as
a point in CP

1 ∼= ←−→e2, e3, but we are actually referring to π(e2)). On the other

hand, since |K| = ∞, then |
{
α ∈ Σ

∣
∣
∣α(π(K )) ∩ π(K ) 
= ∅

}
| = ∞. This

contradicts the fact thatΠ(γk)(π(K )) accumulates on e1. Therefore |K| < ∞,
and then Γ acts properly and discontinuously on each connected component
ofΩ(Γ ). SinceΩ(Γ ) ∼= C×(

H ∪ H
−), each connected component ofΩ(Γ )

is simply connected. Theorem 7 yields k + r + m + n ≤ 4.
[n-con] Γ is not conic, then B(Γ ) = {e1} or B(Γ ) = {e2} (Proposition 15).
We have two possibilities: If Σ is of the form [e2] or [e3], then Λ(Σ) = {e1}
and, as in case [con], it follows that Γ acts properly and discontinuously on
Ω(Γ ) = CP

2\←−→e1, e2 ∼= C
2. If Σ has the form [e1], then Σ is cyclic. Since

Core(Γ ) is not conic, then Core(Γ ) ∼= Z. Since π is a group morphism, then
Γ ∼= Ker(Γ ) � Im(Γ ) = Core(Γ ) � Σ ∼= Z � Z. In both cases, we have
rank(Γ ) ≤ 4.

Now, let us assume that {Π(μk)} is a constant sequence. Then there exists a
sequence {gk} ⊂ ker(Γ ) such that γk = γ0gk . It follows that {gk} ⊂ Core(Γ )

(Proposition 14). Let τ ∈ QP (3, C) be the quasi-projective limit of {gk}, since
Im(τ ) � Ker(τ ), then γ0gk = γk → γ0τ . It is straightforward to verify that
Im(τ ) = Im(γ0τ) andKer(τ ) = Ker(γ0τ).Wenowhave twopossibilities, depend-
ing on whether Γ is conic or not.
If Γ is conic, then Core(Γ ) = 〈gx1,y1 , gx2,y2〉 for some x1, x2, y1, y2 ∈ C.
Using Lemma 1, Γ acts properly and discontinuously on each component of
Ω = CP

2\C(Γ ) ∼= C × (
H

+ ∪ H
−). If Γ is not conic, then Core(Γ ) = 〈gx0,y0〉

for some x0, y0 ∈ C, and C(Γ ) is a line. As in previous cases, Γ acts properly and
discontinuously on each connected component of Ω = CP

2\C(Γ ). In both cases,
Theorem 7 completes the proof for the case when {Π(μk)} is a constant sequence.

(iii) Assume that Σ is not discrete. Let {γk} ⊂ Γ be a sequence of distinct elements,

denote γk =
[
γ

(k)
i j

]
. Depending on whether the sequence {Π(γk)} ⊂ Σ converges

or not, we have two cases:
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[Conv] The sequence {Π(γk)} ⊂ Σ converges to some α ∈ PSL (2, C) where

α =
[

γ22 γ23
0 1

]

, for some γ22 ∈ C
∗ (12)

such that γ
(k)
22

(
γ

(k)
33

)−1 → γ22 and γ
(k)
23

(
γ

(k)
33

)−1 → γ23. Consider the

sequence {γ (k)
33 } ⊂ C

∗, we have three cases:
(a) γ

(k)
33 −→ γ33 ∈ C

∗. Since γ
(k)
11 γ

(k)
22 γ

(k)
33 = 1, and considering (12), it

follows that γ (k)
11

(
γ

(k)
33

)−1 −→ γ −1
22 γ −3

33 . Observe that

γ
(k)
12

(
γ

(k)
33

)−1 → ∞ or γ
(k)
13

(
γ

(k)
33

)−1 → ∞.

Otherwise, γk would converge to an element of PSL (3, C), contradicting
that Γ is discrete. Thus,

γk −→ τa,b :=
⎡

⎣
0 a b
0 0 0
0 0 0

⎤

⎦ ,
for some a, b ∈ C,

|a| + |b| 
= 0

Observe that Ker(τa,b) = ←−−−−−−−−→
e1, [0 : −b : a] and Im(τa,b) = {e1}. For

each quasi-projective limit τa,b ∈ QP (3, C), we consider the point
[0 : −b : a] ∈ ←−→e2, e3 and the horocycle determined by this point and e2,
then we consider the pencil of lines passing through e1 and each point
of the horocycle. Denote by Ω the complement of this pencils of lines in
CP

2. Each connected component of Ω is simply connected. As a conse-
quence of Proposition 1, the action of Γ inΩ is proper and discontinuous.
Theorem 7 concludes this case.

(b) γ
(k)
33 → ∞. From (12), it follows that γ

(k)
22 → ∞. Given that

γ
(k)
11 γ

(k)
22 γ

(k)
33 = 1 for all k ∈ N, then γ

(k)
11 → 0 and γ

(k)
11

(
γ

(k)
33

)−1 −→ 0.

Therefore

γk −→
⎡

⎣
0 γ12 γ13
0 γ22 γ23
0 0 1

⎤

⎦ , where
γ

(k)
12

(
γ

(k)
33

)−1 → γ12 ∈ C

γ
(k)
13

(
γ

(k)
33

)−1 → γ13 ∈ C

(13)

If γ
(k)
12

(
γ

(k)
33

)−1 → ∞ or γ
(k)
13

(
γ

(k)
33

)
→ ∞, we consider the sequence

{γ −1
k } instead. Considering a conjugation of τ by an adequate element of

PSL (3, C), we can assume that γ12 = γ13 = 0. Using Lemma 2, we have
the following possibilities for the Greenberg limit set of Σ :
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(LS1) ΛGr (Σ) = S
1.

(LS2) ΛGr (Σ) = CP
1.

(LS3) |ΛGr (Σ)| = 1.
(LS4) |ΛGr (Σ)| = 2.

Now we prove that neither of this possibilities can happen. In the case (LS1) there are
four possibilities for the convergence of {Π(γk)}:

(LS1.1) The sequence {Π(γk)} converges to id ∈ Σ .
(LS1.2) The sequence {Π(γk)} converges to a elliptic element in Σ .
(LS1.3) The sequence {Π(γk)} converges to a parabolic element in Σ .
(LS1.4) The sequence {Π(γk)} converges to a loxodromic element in Σ .

In Case (LS1.1) we have γ22 = 1 and γ23 = 0, denote the quasi-projective limit of
{γk} by τid = Diag(0, 1, 1). Since ΛGr (Σ) = S

1, we can take g = [
gi j

] ∈ Γ such
that Π(g) is parabolic (see the proof of Proposition 8). Then g22 = g33 = λ ∈ C

∗,
g23 
= 0 and g11 = λ−2. A straightforward calculation shows that

γkgγ
−1
k →

⎡

⎣
λ−2 0 0
0 λ g23
0 0 λ

⎤

⎦ ∈ PSL (3, C) ,

contradicting that Γ is discrete, unless the sequence {γkgγ −1
k } is eventually constant.

Therefore we can assume that this sequence is constant, yielding γ
(k)
22 = γ

(k)
33 = ξk ∈

C
∗. Corollary 5 implies that ξk = 1 for all k, contradicting that γk → τid . Then

sub-case (LS1.1) cannot happen.
Case (LS1.2) cannot occur. Otherwise, Π(γk) would converge to an elliptic element
Diag

(
e2π iθ , 1

) ∈ Σ . After an appropriate conjugation, we can assume that

γk → τθ =
⎡

⎣
0 0 0
0 e2π iθ 0
0 0 1

⎤

⎦ . (14)

A straightforward calculation shows that γ n
k → τ nθ for any n ∈ N. If θ ∈ Q, then

there exist p ∈ Z such that γ
p
k → τ

p
θ = τid ; this cannot happen, as we have already

proven. If θ ∈ R\Q, there is a subsequence {e2π in j θ } such that e2π in j θ → 1. Then
τ
n j
θ → τid as j → ∞. Consider the diagonal sequence {γ nk

k } ⊂ Γ , then γ
nk
k → τid

which cannot happen.
Now we dismiss Case (LS1.3). Assuming it occurs,

γk → τb =
⎡

⎣
0 0 0
0 1 b
0 0 1

⎤

⎦ . (15)

Since the sequence {Π(γk)} converges to a parabolic element and Σ is not discrete,
it follows from Lemma 3 that there exists a sequence {hk} ⊂ Γ such that Π(hk) is
parabolic for all k, and
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Π(hk) =
[
1 εk
0 1

]

→ id,

for some sequence εk → 0. Then using the same reasoning as in the case (LS1.1), we
know that

hk =
⎡

⎣
1 h12 h13
0 1 εk
0 0 1

⎤

⎦ .

A direct calculation shows that γkhkγ
−1
k h−1

k → gh12,0 ∈ PSL (3, C) contradicting
that Γ is discrete.
Finally, Case (LS1.4) is dismissed in a similar way to Case (LS1.3). We proved that
Case (LS1) cannot occur. Case (LS2) cannot happen either, otherwise the action of Γ

would be nowhere proper and discontinuous. Case (LS3) canoot occur, otherwise Σ

is conjugate to a subgroup of Epa (C) (Theorem 2.14 of Cano and Seade 2014). Let
h ∈ Γ be a loxo-parabolic element such that Π(h) is parabolic. A straightforward
computation shows that the sequence of distinct elements {ηk := hγkh−1γ −1

k } ⊂ Γ

converges to an element of PSL (3, C), contradicting that Γ is discrete.
Now, finally, consider the case (LS4). Then Σ is conjugate to a subgroup of Aut (C∗)
(Theorem 2.14 of Cano and Seade 2014). We can take two loxodromic elements
g1, g2 ∈ Γ such that [g1, g2] 
= id and such that the sequence {hγkh−1γ −1

k } ∈ Γ

converges to an element of PSL (3, C). This would contradict that Γ is discrete.

(c) γ
(k)
33 → 0. Considering the sequence {γ −1

k } instead, this case is the same as case
(b).

[Div] The sequence {Π(γk)} ⊂ Σ diverges. Since Γ is not discrete, there are 7
possibilites:

– Σ = SO(3) or Σ = PSL (2, C). These cases cannot happen since Σ is
solvable, but SO(3) and PSL (2, C) are not solvable.

– Σ = Rot∞ or Σ = Dih∞. These cases cannot happen either, otherwise
ΛGr(Σ) = ∅, contradicting Lemma 2.

[Div-1] The group Σ is a subgroup of the affine group Epa (C). There cannot be
elliptic elements inΣ , otherwise λ23(Γ )would have a torsion element or Γ would
contain an irrational screw and therefore, it would be commutative (Corollary 1).
Then every element of Σ has the form

Π(γ ) =
[
1 a
0 1

]

,

where a ∈ A, for some additive group A ⊂ (C,+). Since Σ is not discrete, A is
not discrete. Then either A ∼= R or A ∼= R ⊕ Z (Proposition 17). Let us define the
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following union of pencils of lines passing through e1,

Λ = {e1} ∪
⎛

⎝
⋃

p∈A

π(p)−1

⎞

⎠ ,

andΩ = CP
2\Λ. Using similar arguments as before, the action of Γ on each con-

nected component of Ω is proper and discontinuous. Observe that each connected
component of Ω is simply connected.
[Div-2] The group Σ is a subgroup of the group Aut (C∗). Then Σ is a purely
loxodromic group and then, up to conjugation, each element has the formΠ(γ ) =
Diag (α, 1) for some |α| 
= 1. Let G = λ23(Γ ), then G ∼= Σ , hence, G is not
discrete. Let us write each α ∈ G as α = reiθ , r ∈ A and θ ∈ B, for some
multiplicative group A and some additive group B. Then G ∼= A × B, and since
G is not discrete, then either A is not discrete or B is not discrete (it is not possible
that both A and B are not discrete, otherwise the action of Γ would be nowhere
proper and discontinuous). Let us examine each of the two possibilities:

– A is discrete, and B is not discrete. This case cannot happen, otherwise, since

A is a discrete, then A =
{
rn

∣
∣
∣ n ∈ Z

}
for some r ∈ C

∗. Hence, S1 ⊂ G. This

means that there exists an element γ ∈ Γ such that λ23(γ ) = eiθ for some
θ ∈ [0, 2π). Then either λ23(Γ ) contains a non-trivial torsion element or Γ

contains an irrational screw (contradicting Corollary 1).
– A is not discrete, and B is discrete. Since B is discrete, then B is finite. Then

B ∼= Zk for some k ∈ N. Regarding ←−→e2, e3 homeomorphic to Ĉ and for the
sake of simplifying notation, we will indistinctly denote a point x ∈ G ⊂ C

and its corresponding image in ←−→e2, e3. Let Λ ⊂ CP
2 be given by

Λ = {e1} ∪
⎛

⎝
⋃

p∈G
π(p)−1

⎞

⎠ ,

and Ω = CP
2\Λ. Using a similar argument as in Case [con], we deduce that

the action of Γ on Ω is proper and discontinuous. Besides, each connected
component of Ω is simply connected.

[Div-3] The group Σ is a subgroup of PSL (2, R). Then ΛGr(Σ) ∼= R̂ (Theorem
2.14 of Cano and Seade 2014). Therefore, up to conjugation, the orbits of compact
subsets of CP

1\ΛGr(Σ) accumulate on R̂. Regarding the points π(e2) and π(e3)
as the points 0 and ∞ in this euclidian circle. We define the pencil of lines passing
through e1,

Λ = {e1} ∪
⎛

⎝
⋃

p∈R̂
π(p)−1

⎞

⎠ .
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Table 1 The decomposition of a non-commutative subgroup of U+ in four layers

Parabolic Loxodromic
︷ ︸︸ ︷ ︷ ︸︸ ︷

⎡

⎣
1 x y
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 x y
0 1 z
0 0 1

⎤

⎦

⎡

⎣
α x y
0 β z
0 0 β

⎤

⎦

⎡

⎣
α x y
0 β z
0 0 γ

⎤

⎦

z 
= 0 α 
= β, z 
= 0 β 
= γ

Loxo-parabolic
Loxo-parabolic

Complex homothety
Strongly loxodromic

Core(Γ ) A\Ker(Γ ) Ker(λ23)\A

Again, the action of Γ on each of these connected components of Ω = CP
2\Λ

is proper and discontinuous. Each of the connected components of Ω are simply
connected.

��

3.4 Consequences of the Theorem of Decomposition of Non-commutative Groups

In this section we prove some consequences of Theorems 5 and 8. In Corollary 6,
we give a simplified decomposition of a group in terms of copies of Z

d . Theorem 5
gives a decomposition of the group Γ in four layers. In Corollary 7, we prove that the
first two layers are made of parabolic elements and the last two layers are made of
loxodromic elements. The description of these four layers are summarized in Table 1.
Before proving Corollaries 6 and 7, we need to prove some technical results.

Let F1, F2, F3 ⊂ U+ be the pairwise disjoint subsets defined as

F1 =
⎧
⎨

⎩
α =

⎡

⎣
α11 0 α13
0 α22 0
0 0 α33

⎤

⎦
∣
∣
∣α ∈ U+

⎫
⎬

⎭

F2 =
⎧
⎨

⎩
α =

⎡

⎣
α11 α12 α13
0 α22 0
0 0 α33

⎤

⎦
∣
∣
∣α12 
= 0, α ∈ U+

⎫
⎬

⎭

F3 =
⎧
⎨

⎩
α =

⎡

⎣
α11 0 α13
0 α22 α23
0 0 α33

⎤

⎦
∣
∣
∣α23 
= 0, α ∈ U+

⎫
⎬

⎭

F4 =
⎧
⎨

⎩
α =

⎡

⎣
α11 α12 α13
0 α22 α23
0 0 α33

⎤

⎦
∣
∣
∣α12, α23 
= 0, α ∈ U+

⎫
⎬

⎭

These four subsets classify the elements of U+ depending on whether they have
zeroes in entries (1,2) and (2,3). We need this classification because, as we will see in
Proposition 18, a necessary condition for two elements ofU+ to commute is that they
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both have the same form given by the sets F1, F2, F3. This is equivalent to say that
the two 2 × 2 diagonal sub-blocks of one element share the same fixed points with
the corresponding sub-block of the other element. This argument will be key to prove
Corollary 6.

Proposition 18 Let Γ ⊂ U+ be a subgroup and let α = [
αi j

]
, β = [

βi j
] ∈ Γ \{id}.

If [α, β] = id then α, β ∈ Fi for some i = 1, 2, 3, 4.

Proof Let α = [
αi j

]
and β = [

βi j
]
be two elements in Γ and suppose that they

commute. As in Lemma 1, let us denote by α1 and α2 (resp. β1 and β2) the upper
left and bottom right 2 × 2 blocks of α (resp. β). Since α and β commute, a direct
calculation shows that αi and βi commute, for i = 1, 2. If we consider αi and βi as
elements of PSL (2, C), Lemma 1 states that

Fix(α1) = {e1, [α12 : α22 − α11]}, Fix(α2) = {e1, [α23 : α33 − α22]}.

Similar expressions hold for Fix(βi ). Also, [α1, β1] = id ⇔ Fix(α1) = Fix(β1). This
allows us to conclude that, if α and β commute then α12 and β12 are zero or non-zero
simultaneously, the same holds for α23 and β23. This proves the proposition. ��
Proposition 19 Let α, β ∈ Fi , i = 1, 2, 3. Then the relation defined by α ∼ β if and
only if [α, β] = id, is an equivalence relation on each subset Fi , i = 1, 2, 3.

Proof It is straightforward to verify that the relation is reflexive and symmetric. We
now verify that it is also transitive, let α, β, γ ∈ Fi for some i = 1, 2, 3 such that
[α, β] = id and

[
β, γ

] = id. Denote α = [
αi j

]
, β = [

βi j
]
and γ = [

γi j
]
. Then

[α, β] = id if and only if

β13(α11 − α33) + α13(β11 − β33) = α23β12 − α12β23. (16)

If both α, β ∈ Fi , i = 1, 2, 3, then α12 = β12 = 0 or α23 = β23 = 0, which implies
that the right side of (16) is zero and then β13(α11 −α33)+α13(β11 −β33) = 0. From
this, analogously to the proof of Proposition 18, it follows that Fix(α) = Fix(β).
Analogously,

[
β, γ

] = id implies that Fix(β) = Fix(γ ), then Fix(α) = Fix(γ ) and
this implies that

[
α, γ

] = id. This proves that the relation is transitive and thus, it is
an equivalence relation on Fi , i = 1, 2, 3. ��

In Alderete-Acosta (2019), the author proves a version of Corollary 6 for groups
with real entries. In Barrera et al. (2018a), a version of this corollary for purely
parabolic groups is proven. Corollary 6 is a generalization of these previous results.

Propositions 18 and 19 state that, unlike the purely parabolic case (see Lemma 7.9
of Barrera et al. 2018a), commutativity does not define an equivalence relation onU+.
This equivalence relation occurs separately on F1, F2 and F3. On F4, commutativity
does not define an equivalence relation.

Corollary 6 simplifies the decomposition described in Theorem 5. We will need
this proposition to prove the corollary.
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Corollary 6 Under the same hypothesis and notation of Theorem 5, the group Γ can
be written as

Γ ∼= Z
r0 � · · · � Z

rm ,

for integers r0, ..., rm ≥ 1 satisfying r0 + · · · + rm ≤ 4.

Proof Using the notation of Theorem 5, we know that the group A = Core(Γ ) �

〈ξ1〉 � · · · � 〈ξr 〉 is purely parabolic and therefore, by Theorem 7.11 of Barrera et al.
(2018a) we can write

A ∼= Z
k0 � · · · � Z

kn1 . (17)

For some integers k0, ..., kn1 such that k0 + · · · + kn1 ≤ 4. We denote

ri = ki , for i = 0, ..., n1. (18)

Let us re-order the elements {η1, ..., ηm} in the third layer in such way that if i < j
, then ηi ∈ Fs1 , η j ∈ Fs2 with s1 ≤ s2. We re-order the elements {γ1, ..., γn} in the
same way. Define the relation in

Γ1 := 〈η1, ..., ηm〉 ∩ (F1 ∪ F2 ∪ F3)

given by α ∼ β if and only if [α, β] = id. This is an equivalence relation (Proposition
19). Denote by A1, ..., An2 the equivalence classes in Γ1. Let Bi = 〈Ai 〉, clearly Bi is
a commutative and torsion-free group. Denoting pi = rank(Bi ), we have Bi ∼= Z

pi .
Then

Γ1 ∼= Z
p1 � · · · � Z

pn2 . (19)

Denote by η p̃i the remaining elements of the third layer. That is,

〈η1, ..., ηm〉 ∩ F4 = {η p̃1 , ..., η p̃n3
}.

Then it follows from (19)

〈η1, ..., ηm〉 ∼= Z
p1 � · · · � Z

pn2 � 〈η p̃1〉 � · · · � 〈η p̃n3
〉. (20)

Let us denote

rn1+i = pi , for i = 1, ..., n2.

rn1+n2+i = 1, for i = 1, ..., n3. (21)

Applying the same argument to the elements of the fourth layer {γ1, ..., γn}we have

〈γ1, ..., γn〉 ∼= Z
q1 � · · · � Z

qn4 � 〈γq̃1〉 � · · · � 〈γq̃n5 〉. (22)
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Again, we denote

rn1+n2+n3+i = qi , for i = 1, ..., n4.

rn1+n2+n3+n4+i = 1, for i = 1, ..., n5. (23)

Putting together (17), (20) and (22) we prove the corollary. The indices r0, ..., rm are
given by (18), (21) and (23) and m = n1 + ... + n5. ��

The following corollary describes the type of elements found in each layer of the
decomposition.

Corollary 7 Let Γ ⊂ U+ be a non-commutative discrete subgroup. Consider the
decomposition in four layers described in the proof of Theorem 5 and summarized
in Table 1.

The first two layers Core(Γ ) and A\Core(Γ ) are purely parabolic and the last
two layers Ker(λ23)\A and Γ \Ker(λ23) are made up entirely of loxodromic elements.
Furthermore,

(i) The third layer Ker(λ23)\A contains only loxo-parabolic elements.
(ii) The fourth layer Γ \Ker(λ23) contains only loxo-parabolic and strongly loxo-

dromic elements or complex homotheties of the form Diag(λ, λ−2, λ).

Proof From the definition of Core(Γ ) and A = Ker(λ12) ∩Ker(λ23) is clear that this
two subgroups are purely parabolic. Now we deal with the third layer Ker(λ23)\A. If
there were a elliptic element γ in this layer, we have two cases:

– If γ has infinite order, then Γ cannot be discrete.
– If γ has finite order p > 0, then Γ cannot be torsion-free.

If there were a parabolic element γ in this layer, then it must have exactly two
repeated eigenvalues (if it had 3, then γ ∈ A). Furthermore, all of its eigenvalues must
be unitary (they cannot be 1, otherwise γ ∈ A). Then

γ =
⎡

⎣
e−4π iθ x y

0 e2π iθ z
0 0 e2π iθ

⎤

⎦

with z 
= 0 and θ ∈ R\Q (since λ12(Γ ) is a torsion-free group). Thismeans that γ is an
irrational ellipto-parabolic element, and by Proposition 5, Γ would be commutative.
All of these arguments prove that the third layer Ker(λ23)\A is purely loxodromic.
Finally, since Γ is not commutative, it cannot contain a complex homothety as a
consequence of Corollary 4.

Now we deal with the fourth layer Γ \Ker(λ23). Using the same argument as in
the third layer, there cannot be elliptic elements. Now assume that there is a parabolic
element γ ∈ Γ \Ker(λ23). In the same way as before, γ must have exactly two distinct
eigenvalues and none of them are equal to 1. Since γ /∈ Ker(λ23), then

γ =
⎡

⎣
e2π iθ x y
0 e2π iθ z
0 0 e−4π iθ

⎤

⎦
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with x 
= 0 and θ ∈ R\Q. Then γ is an irrational ellipto-parabolic element, and
by Proposition 5, Γ is commutative. Then the fourth layer Γ \Ker(λ23) is purely
loxodromic. Inspecting the form of these elements, they can be strongly loxodromic
or complex homotheties of the form Diag(λ, λ−2, λ) (Corollary 4). ��

4 Commutative Triangular Groups

In this section we describe the commutative triangular groups of PSL (3, C). We
describe how these groups should look in order to be commutative and discrete. We
also describe the Kulkarni limit sets and obtain a bound for their rank.

Recall the definitions of the group morphisms Π , λ12, λ13 and λ23. Let us define

the group morphism Π∗ : U+ → Möb
(
Ĉ

)
given by

Π∗ ([αi j
])

(z) = α11α
−1
22 z + α12α

−1
22 .

We will also define the projections πkl
([

αi j
]) = αkl .

Whenever we have a discrete subgroupΓ ⊂ U+, we have a finite index torsion-free
subgroup Γ ′ ⊂ Γ such that Π∗(Γ ), λ12(Γ

′), λ13(Γ ) and λ23(Γ
′) are torsion-free

groups as well (Lemma 5.8 of Barrera et al. 2018a). This finite index subgroup and the
original group satisfy ΛKul(Γ ) = ΛKul(Γ

′) (Proposition 3.6 of Barrera et al. 2016).
Therefore we can assume for the rest of this work that all discrete subgroups Γ ⊂ U+
are torsion-free.

The following lemma describes the form of the upper triangular commutative sub-
groups of PSL (3, C). The proof is taken from Barrera et al. (2018a).

Lemma 4 (Lemma 5.13 of Barrera et al. 2018a) Let Γ ⊂ U+ be a commutative group,
then Γ is conjugate in PSL (3, C) to a subgroup of one of the following Abelian Lie
Groups:

1.

C1 =
⎧
⎨

⎩

⎛

⎝
α−2 0 0
0 α β

0 0 α

⎞

⎠
∣
∣
∣α ∈ C

∗, β ∈ C

⎫
⎬

⎭
.

2.

C2=
{
Diag

(
α, β, α−1β−1

) ∣
∣
∣α, β ∈C

∗} .

3.

C3 =
⎧
⎨

⎩

⎛

⎝
1 0 β

0 1 γ

0 0 1

⎞

⎠
∣
∣
∣β, γ ∈ C

⎫
⎬

⎭
.

4.

C4 =
⎧
⎨

⎩

⎛

⎝
1 β γ

0 1 0
0 0 1

⎞

⎠
∣
∣
∣β, γ ∈ C

⎫
⎬

⎭
.

5.

C5 =
⎧
⎨

⎩

⎛

⎝
1 β γ

0 1 β

0 0 1

⎞

⎠
∣
∣
∣β, γ ∈ C

⎫
⎬

⎭
.
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Proof Since Γ is commutative, Π(Γ ) and Π∗(Γ ) are commutative. Let us consider
the following 4 possible cases:

1. Both groupsΠ(Γ ) andΠ∗(Γ ) contain a parabolic element. Since they areAbelian
groups, it is direct to verify that they are purely parabolic, and thenΓ ⊂ Ker(λ12)∩
Ker(λ13). Let h ∈ Γ such that Π(g) and Π∗(g) are parabolic, then

h =
⎡

⎣
1 a b
0 1 c
0 0 1

⎤

⎦ ,

where ac 
= 0. Let us define h0 ∈ PSL (3, C) by h0 = Diag(a−1, 1, c), then for
every g = [

gi j
] ∈ h0Γ h−1

0 ,

[
h0hh

−1
0 , g

]
=
⎡

⎣
1 0 −g12 + g23
0 1 0
0 0 1

⎤

⎦ .

Since Γ is commutative, it follows that g12 = g13. This means that Γ is conjugate,
via h0, to a subgroup of C5.

2. The group Π(Γ ) does not contain a parabolic element, but Π∗(Γ ) does. Under
this assumptions, we deduce thatΠ∗(Γ ) is purely parabolic, henceΓ ⊂ Ker(λ12).
Since Π(Γ ) does not contain parabolic elements, there exists w ∈ C such that
Π(Γ )w = w. We define

h =
⎡

⎣
1 0 0
0 1 w

0 0 1

⎤

⎦ ,

it is straightforward to verify that, for every g = [
gi j

] ∈ Γ , there exists cg ∈ C

such that

hgh−1 =
⎡

⎣
g11 g12 cg
0 g11 0
0 0 g−2

11

⎤

⎦ .

Therefore Γ1 = hΓ h−1 leaves ←−→e1, e3 invariant. Then Π1 : Γ1 → Möb
(
Ĉ

)
given

by Π1
([
gi j

]) = g11g
−1
33 z + g13g

−1
33 is a well defined group morphism. Now, we

have two sub-cases, depending on whetherΠ1(Γ1) has a parabolic element or not.

– The group Π1(Γ1) contains a parabolic element. Then Π1(Γ1) is purely
parabolic and then Γ1 ⊂ Ker(λ13). From this, we deduce that Γ is conju-
gate, via h, to the group Γ1 of the form

hgh−1 =
⎡

⎣
1 g12 cg
0 1 0
0 0 1

⎤

⎦ ,
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corresponding to a subgroup of C4.
– The group Π1(Γ1) does not contains parabolic elements. Then there exists

p ∈ C such that Π1(Γ1)p = p. We define

h1 =
⎡

⎣
1 0 p
0 1 0
0 0 1

⎤

⎦ ,

then for every g = [
gi j

] ∈ Γ1 it holds

(h1h)g(h1h)−1 =
⎡

⎣
g11 g12 0
0 g11 0
0 0 g−2

11

⎤

⎦ .

This means that Γ is conjugate to a subgroup of C1.

3. The group Π(Γ ) contains a parabolic element but Π∗(Γ ) does not. This case
is similar to the last case, but the roles of Π(Γ ) and Π∗(Γ ) are reversed. In
this case, Γ leaves ←−→e1, e3 invariant again and therefore, we consider the group
morphism Π2 = Πe2,

←−→e1,e3 . The group Π2(Γ ) is Abelian and it might contain
parabolic elements or not. In the former case, Γ is conjugate to a subgroup of C3;
in the latter case, it is conjugate to a subgroup of C1.

4. NeitherΠ(Γ ) norΠ∗(Γ ) contains a parabolic element. Therefore there are z, w ∈
C such that Π∗(Γ )z = z and Π∗(Γ )w = w. Define

h =
⎡

⎣
1 z 0
0 1 w

0 0 1

⎤

⎦ .

Then for every g = [
gi j

] ∈ Γ there exists cg ∈ C such that

hgh−1 =
⎡

⎣
g11 0 cg
0 g22 0
0 0 g33

⎤

⎦ .

Using the same arguments as in the previous cases and considering the group
morphism Π2 of Case (3) and the Abelian group Π2(Γ ), we have the same two
possibilities: eitherΠ2(Γ ) contains a parabolic element or not. In the former case,
Γ ⊂ Ker(λ13) and therefore it is conjugate to a subgroup of C1. In the latter case,
there exists p ∈ C such that Π2(Γ )p = p. Let

h1 =
⎡

⎣
1 0 p
0 1 0
0 0 1

⎤

⎦ .

Then the group (h1h)Γ (h1h)−1 contains only diagonal elements. Hence Γ is
conjugate to a subgroup of C2. ��
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Observe that C3, C4 and C5 contain only parabolic elements, and their subgroups
have already been studied in Barrera et al. (2018a). Groups C1 and C2 can be purely
parabolic or they can have loxodromic elements, therefore we will only study discrete
subgroups of C1 and C2 containing loxodromic elements. We will call this two cases
Cases 1 and 2 respectively. We study each case in each of the following two sections.

4.1 Case 1

This first proposition describes the form of subgroups of C1.

Proposition 20 Let Γ ⊂ U+ be a commutative subgroup such that each element of
Γ has the form given by (1) of Lemma 4. Then there exists an additive subgroup
W ⊂ (C,+), and a group morphism μ : (W ,+) → (C∗, ·) such that

Γ = ΓW ,μ =
⎧
⎨

⎩

⎡

⎣
μ(w)−2 0 0

0 μ(w) wμ(w)

0 0 μ(w)

⎤

⎦
∣
∣
∣w ∈ W

⎫
⎬

⎭
.

Proof Let ζ : (Γ , ·) → (C,+) be the group homomorphism given by
[
αi j

] ζ�→
α23α

−1
33 , clearly Ker(ζ ) = {id}. Thus we can define the group homomorphism μ :

(ζ(Γ ),+) → (C∗, ·) as x μ�→ π22
(
ζ−1(x)

)
. Define the additive group W = ζ (Γ ). It

is straightforward to verify that

Γ =
⎧
⎨

⎩

⎡

⎣
μ(w)−2 0 0

0 μ(w) wμ(w)

0 0 μ(w)

⎤

⎦
∣
∣
∣w ∈ W

⎫
⎬

⎭
.

��
For w ∈ W , we will denote

γw =
⎡

⎣
μ(w)−3 0 0

0 1 w

0 0 1

⎤

⎦ ∈ ΓW ,μ.

Proposition 21 Let Γ = ΓW ,μ ⊂ U+ be a commutative subgroup of the form given
by Proposition 20. If rank(Γ ) = r , then rank(W ) = r .

Proof Let r = rank(Γ ) and γ1, ..., γr ∈ Γ be elements such that Γ = 〈γ1, ..., γr 〉.
Let w1, ..., wr ∈ W such that γ j = γw j for j = 1, ..., r . Let w ∈ W and consider
γw ∈ Γ , then there exist n1, ..., nr ∈ Z such that γw = γ

n1
1 · · · γ nr

r . Comparing entries
(2,3) of both sides yields w = n1w1 + ... + nrwr . This means that W = 〈w1, ..., wr 〉,
and therefore rank(W ) ≤ r . To prove that rank(W ) = r , assume without loss of
generality that wr = n1w1 +· · ·+ nr−1wr−1. Then γr = γ

n1
1 · · · γ nr−1

r , contradicting
that rank(Γ ) = r . This completes the proof. ��
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Now, we show examples of non-discrete additive subgroups W such that ΓW ,μ is
discrete.

Example 2 If α and β are two rationally independent real numbers, then W =
SpanZ(α, β) is a non-discrete additive subgroup of C.

Proof Let h : (W ,+) → (S1, ·) be a group homomorphism given by x �→ e2π i
x
α .

Observe that {1, β
α
} are rationally independent, then h(W ) is a sequence of distinct

elements in S
1. Therefore there is a subsequence, denoted by {gn} ⊂ h(W ), such that

gn = e2π iqn
β
α → ξ ∈ S

1 for some {qn} ⊂ Z and some ξ ∈ S
1. Define the sequence

{hn} ⊂ S
1 by hn = gng

−1
n+1, then hn → 1. Denoting hn = e2π irn

β
α for some {rn} ⊂ Z,

and taking the logarithm of the sequence we have

2π irn
β

α
+ 2π isn → 0 (24)

for some logarithm branch defined by {sn} ⊂ Z. As a consequence of (24), rnβ +
snα → 0 and therefore W is not discrete. ��

Proposition 23 will provide the full description of discrete commutative subgroups
of U+ of the case 1. In order to prove this proposition, we first need to determine the
equicontinuity region for these groups (Proposition 22). To do this, consider Table 2,
in which we list all possible quasi-projective limits τ of sequences of distinct elements
in these groups along with the condition under which they occur.

Proposition 22 Let Γ ⊂ PSL (3, C) be a commutative discrete group of the form
given in Propositions 20. If we assume that Γ contains loxodromic elements, then
Eq(Γ ) = CP

2\ (←−→e1, e2 ∪ ←−→e2, e3
)
.

Proof Weuse Proposition 2 to determineEq(Γ ). Let γw ∈ Γ be a loxodromic element,
then |μ(w)| 
= 1. Let us suppose, without loss of generality, that |μ(w)| > 1. Consider
the sequence {γ n

w}n∈N ⊂ Γ , then

γ n
w → τ1 =

⎡

⎣
0 0 0
0 0 1
0 0 0

⎤

⎦ , with Ker(τ1) = ←−→e1, e2. (25)

Considering the sequence {γ −n
w }n∈N ⊂ Γ instead, we have γ −n

w → τ2 =
Diag (1, 0, 0) with Ker(τ2) = ←−→e2, e3. This, together with Proposition 2 and (25) imply
that

CP
2\ (←−→e1, e2 ∪ ←−→e2, e3

) ⊂ Eq(Γ ). (26)

Proposition 2 and Table 2 imply that Eq(Γ ) ⊂ CP
2\ (←−→e1, e2 ∪ ←−→e2, e3

)
. This together

with (26) prove the proposition. ��
The following observation is important for the proof of Theorem 9.
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Ta
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2
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si
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se
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en
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{w
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di
st
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in

Γ

C
as
e

τ
C
on

di
tio

ns
K
er
(τ
)

Im
(τ
)

(i
)

D
ia
g

(1
,
0,

0 )
w
n

→
b

∈C
an
d

μ
(w

n
)
→

0
or w
n

→
∞

,
μ

(w
n
)
→

0
an
d

w
n
μ

(w
n
)3

→
0

←−
→

e 2
,
e 3

{e 1
}

(i
i)

⎡ ⎣
0

0
0

0
1

b
0

0
1

⎤ ⎦
w
n

→
b

∈C
an
d

μ
(w

n
)
→

∞
{e 1

}
←−

→
e 2

,
e 3

(i
ii)

⎡ ⎣
0

0
0

0
0

1
0

0
0

⎤ ⎦

w
n

→
∞

an
d

μ
(w

n
)
→

∞
or w
n

→
∞

an
d

μ
(w

n
)
→

a
∈C

∗
or w
n

→
∞

,
μ

(w
n
)
→

0
an
d

w
n
μ

(w
n
)3

→
∞

←−
→

e 1
,
e 2

{e 2
}

(i
v)

⎡ ⎣
1

0
0

0
0

b
0

0
0

⎤ ⎦
w
n

→
∞

,μ
(w

n
)
→

0
an
d

w
n
μ

(w
n
)3

→
b

∈C
∗

{e 2
}

←−
→

e 1
,
e 2
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Observation 1 If Γ ⊂ C1 is a complex Kleinian group and
←−→e1, e2∪←−→e2, e3 ⊂ ΛKul(Γ ),

then Propositions 3 and 22 imply that

ΛKul(Γ ) = ←−→e1, e2 ∪ ←−→e2, e3.

The following proposition characterize discrete subgroups belonging to this first
case.

Proposition 23 Let Γ = ΓW ,μ ⊂ U+ be a group as described in Proposition 20. Γ
is discrete if and only if rank(W ) ≤ 3 and the morphism μ satisfies the following
condition:

(C) Whenever we have a sequence {wk} ∈ W of distinct elements such that wk → 0,
either μ(wk) → 0 or μ(wk) → ∞.

Proof First, assume that rank(W ) ≤ 3 and that the group morphism μ satisfies con-
dition (C). If W is discrete, then it is straightforward to see that Γ is discrete. Now,
assume that W is not discrete. Let {γk} ⊂ Γ be a sequence of distinct elements such
that γk → id, denote γk = γwk . Then μ(wk) converges to some cubic root of the
unity and wk → 0. Since μ satisfies condition (C), then μ(wk) → 0 or μ(wk) → ∞
contradicting that μ(wk) converges to some cubic root of the unity. This contradiction
proves that Γ is discrete.

Now assume that Γ is discrete. Propositions 3 and 22 imply that Γ acts properly
and discontinuously on Eq(Γ ) = CP

2\ (←−→e1, e2 ∪ ←−→e2, e3
) ∼= C × C

∗. Consider the
universal covering π = (id, exp) : C × C → C × C

∗, where exp(z) = ez for z ∈ C.
The group Γ can be written as Γ ∼= Γ1 × Γ2 with

Γ1 =
{[

μ(w)−3 0
0 1

] ∣
∣
∣w ∈ W

}

, Γ2 =
{[

1 w

0 1

] ∣
∣
∣w ∈ W

}

with the multiplicative group Γ1 acting on C
∗, and the additive group Γ2 acting on

C. Let Γ̃ , Γ̃2 be covering groups of Γ and Γ2 respectively (Theorem 9.1 of Bredon
1972). Let Γ̃1 = Γ1. There is a group morphism, induced by π and still denoted by
π , given by

π = (id, exp) : Γ̃ ∼= Γ̃1 × Γ̃2 → Γ1 × Γ2

(α, β) �→ (α, eβ)

Observe that Γ1 ∼= Z
k1 and Γ2 ∼= Z

k2 with k1 = rank(Γ1) and k2 = rank(Γ2).
Then Γ ∼= Z

k1 × Z
k2 = Z

k with k = k1 + k2 = rank(Γ ). Since Ker(π) = Ker(id) ×
ker(exp) ∼= Z, then Γ̃ ∼= Ker(π) × Γ ∼= Z × Z

k . Therefore,

rank (Γ ) = k + 1. (27)

On the other hand, since Γ acts properly and discontinuously on C × C
∗, then Γ̃ acts

properly and discontinuously on C × C, which is simply connected. Then Theorem 7
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implies rank
(
Γ̃
)

≤ 4. This, togetherwith (27) yields rank(Γ ) ≤ 3.Using Proposition

21 we conclude that rank(W ) ≤ 3.
Now we will verify that μ satisfies the condition (C). Let {wk} ⊂ W be a sequence

of distinct elements such that wk → 0. Consider the sequence {μ(wk)} ⊂ C
∗, and

assume that it does not converge to 0 or ∞, then there are open neighbourhoods U0
and U∞ of 0 and ∞ respectively such that {μ(wk)} ⊂ CP

1\ (U0 ∪U∞). Since CP
1

is compact and CP
1\ (U0 ∪U∞) is a closed subset of CP

1, then CP
1\ (U0 ∪U∞) is

compact, and therefore there is a converging subsequence of {μ(wk)}, still denoted the
sameway.Let z ∈ C

∗ such thatμ(wk) → z, thenγk → Diag
(
z−3, 1, 1

)
, contradicting

that Γ is discrete. This proves that μ satisfies the condition (C). ��
In order to describe the Kulkarni limit set, we will divide all groups Γ = ΓW ,μ of

this case into the following sub-cases:

Case Conditions

C1.1 μ(W ) has rational rotations and W is discrete.
C1.2 μ(W ) has rational rotations and W is not discrete.
C1.3 μ(W ) has no rational rotations but has irrational rotations, and W is discrete.
C1.4 μ(W ) has no rational or irrational rotations, and W is discrete.
C1.5 μ(W ) has no rational rotations but has irrational rotations, and W is not discrete.
C1.6 μ(W ) has no rational or irrational rotations, and W is not discrete.

We say that the commutative group Γ = ΓW ,μ satisfy the condition (F) if there is
a sequence {wk} ⊂ W such that wk → ∞, μ(wk) → 0 and wkμ(wk)

3 → b ∈ C
∗.

Observation 2 IfΓ = ΓW ,μ is cyclic, then W = 〈w〉 (Proposition 21). Then the group
Γ is either generated by a loxo-parabolic or an ellipto-parabolic element depending
on whether |μ(w)| 
= 1 or |μ(w)| = 1. According to Propositions 4.2.10 and 4.2.19
of Cano et al. (2013), ΛKul(Γ ) = ←−→e1, e2 ∪ ←−→e2, e3 and ΛKul(Γ ) = ←−→e1, e2 respectively.
Therefore we will assume that the group Γ is not cyclic.

Now, we describe the Kulkarni limit sets.

Theorem 9 Let Γ ⊂ PSL (3, C) be a commutative discrete group having the form
given in Proposition 23, then

ΛKul(Γ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

{e1, e2}, Cases C1.3 or C1.4 with condition (F)not holding.

←−→e1, e2,

{
Cases C1.3 or C1.4, satisfying condition (F)

Case C1.1

{e1} ∪ ←−→e2, e3, Cases C1.5 or C1.6 with condition (F)not holding.

←−→e1, e2 ∪ ←−→e2, e3,

{
Cases C1.5 or C1.6, satisfying condition (F)

Case C1.2

For the sake of clarity, we break down the proof of Theorem 9 into Lemmas 5–9.
Lemma 5 determines the set L0(Γ ) for all cases. Lemma 6 describe CaseC1.1, Lemma
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7 describes Case C1.2, Lemma 8 describes Cases C1.3 and C1.4. Finally, Lemma 9
describes Cases C1.5 and C1.6.

Lemma 5 Let Γ ⊂ U+ be a commutative discrete group of the form given in Propo-
sition 23, then

L0(Γ ) =
{

{e1, e2}, If μ(W ) does not contain rational rotations
←−→e1, e2, If μ(W ) contains rational rotations

Proof Since e1 and e2 are global fixed points of Γ , in both cases we have {e1, e2} ⊂
L0(Γ ). A direct computation shows that if X ∈ L0(Γ ), then X ∈ ←−→e1, e2, that is,
L0(Γ ) ⊂ ←−→e1, e2.

It is straightforward to verify that, if μ(W ) contains rational rotations, then every
point in ←−→e1, e2 is in L0(Γ ), and therefore L0(Γ ) = ←−→e1, e2. Also, if μ(W ) doesn’t
contain rational rotations, then L0(Γ ) = {e1, e2}. ��
Lemma 6 Let Γ = ΓW ,μ ⊂ U+ be a commutative discrete group of the form given in
Proposition 23. If W is discrete andμ(W ) contains rational rotations, thenΛKul(Γ ) =←−→e1, e2.

Proof Since μ(W ) contains rational rotations, L0(Γ ) = ←−→e1, e2 (Lemma 5). Since
W is discrete, then Γ has no sequences with quasi-projective limit of the form (ii)
in Table 2, and this implies ΛKul(Γ ) ⊂ ←−→e1, e2 (Proposition 3). All of this yields←−→e1, e2 = L0(Γ ) ⊂ ΛKul(Γ ) ⊂ ←−→e1, e2. ��
Lemma 7 Let Γ = ΓW ,μ ⊂ U+ be a commutative discrete group of the form given
in Proposition 23. If μ(W ) contains rational rotations and W is not discrete, then
ΛKul(Γ ) = ←−→e1, e2 ∪ ←−→e2, e3.

Proof Since W is not discrete, there is a sequence {wn} ⊂ W such that wn → 0,
and therefore either μ(wn) → ∞ or μ(wn) → 0 (Proposition 23). We can assume
without loss of generality that the former happens (otherwise, consider the sequence
{−wn}). Then the quasi-projective limit of the sequence {γwn } is τ = Diag(0, 1, 1).
Let z ∈ CP

2\L0(Γ ), then z /∈ Ker(τ ) = {e1} (Lemma 5). Therefore the set of
accumulation points of points inCP

2\L0(Γ ) is Im(τ ) = ←−→e2, e3. Then
←−→e1, e2∪←−→e2, e3 ⊂

L0(Γ ) ∪ L1(Γ ). Using Observation 1 we conclude that ΛKul(Γ ) = ←−→e1, e2 ∪ ←−→e2, e3
whenever W contains rational rotations and is not discrete. ��
Lemma 8 Let Γ = ΓW ,μ ⊂ U+ be a commutative discrete group of the form given in
Proposition 23. If μ(W ) contains no rational rotations and W is discrete, then

ΛKul(Γ ) =
{←−→e1, e2, if Γ satisfy condition (F)

{e1, e2}, any other case
.

Proof If W is discrete, using Table 2 we conclude that ←−→e2, e3 cannot be contained in
ΛKul(Γ ). Then, if μ(W ) contains no rational rotations, either ΛKul(Γ ) = {e1, e2} or
ΛKul(Γ ) = ←−→e1, e2. This argument, together with Table 2 concludes the proof. ��
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Lemma 9 Let Γ = ΓW ,μ ⊂ U+ be a commutative discrete group of the form given in
Proposition 23. If μ(W ) contains no rational rotations and W is not discrete, then

ΛKul(Γ ) =
{←−→e1, e2 ∪ ←−→e2, e3, if Γ satisfy condition (F)

{e1} ∪ ←−→e2, e3, any other case
.

Proof Sinceμ(W ) contains no rational rotations, L0(Γ ) = {e1, e2} (Lemma 5). Since
W is not discrete, then there is a sequence {wk} ⊂ W such that wk → 0, and then
μ(wk) → ∞ or μ(wk) → 0 (Proposition23). In the former case, we can conclude
using Table 2, that ←−→e2, e3 ⊂ ΛKul(Γ ). In the latter case we can consider the sequence
{−wk} which satisfies μ(−wk) → ∞, and we conclude again that ←−→e2, e3 ⊂ ΛKul(Γ ).

If the groupΓ satisfies condition (F), usingTable 2 it follows that←−→e1, e2 ⊂ ΛKul(Γ ),
and using Observation 1 we conclude that ΛKul(Γ ) = ←−→e1, e2 ∪ ←−→e2, e3. Analogously, if
Γ doesn’t satisfy condition (F), ΛKul(Γ ) = {e1} ∪ ←−→e2, e3. ��

In Example 3 we show a group belonging to Case C1.6. This example is worth
noting because it was conjectured that only fundamental groups of Hopf surfaces had
a Kulkarni limit set consisting of a line and a point. This is an example of a group with
this limit set, which is not a fundamental group of a Hopf surface (since such groups
are cyclic, Kato 1975).

Example 3 Let W = SpanZ{1,√2} and let μ : (W ,+) → (C∗, ·) be the group

homomorphism given by μ(1) = e−1 and μ(
√
2) = e

√
2. Consider the commutative

group Γ = ΓW ,μ. Let {wn} ⊂ W be a sequence of distinct elements such that
wn = pn + qn

√
2 → 0. Assuming without loss of generality that pn,−qn → ∞,

we have μ(wn) = μ(1)pnμ(
√
2)qn = e−pn+qn

√
2 → 0. Therefore Γ is discrete

(Proposition 23).
Observe that μ(W ) contains neither rational nor irrational rotations. Otherwise,

therewouldbe x ∈ μ(W )\{1} such that |x | = 1, and then p+q
√
2 ∈ Z for some p, q ∈

Z. This would contradict that {1,√2} are rationally independent. This verifies that Γ
belongs to the case C1.6. Using Theorem 9, if follows that ΛKul(Γ ) = {e1} ∪ ←−→e2, e3
unless condition (F) is satisfied. That is, unless there is a sequence {wn} ⊂ W such that
wn → ∞, μ(wn) → 0 and wnμ(wn)

3 → b ∈ C
∗. Assume that this happens. Since

wn → ∞, there are the following possibilities for the sequences {pn}, {qn} ⊂ Z:

1. If both sequences {pn}, {qn} are bounded, then there exists R > 0 such that
|pn|, |qn| < R and then |pn+qn

√
2| < R(

√
2+1). This contradicts thatwn → ∞.

2. If μ(wn) → 0 with pn → ∞ and {qn} is bounded, then

wnμ(wn)
3 = pne

−3pn
︸ ︷︷ ︸

→0

e3qn
√
2

︸ ︷︷ ︸
bounded

+ qn
√
2

︸ ︷︷ ︸
bounded

e−3pn+3qn
√
2

︸ ︷︷ ︸
→0

→ 0

3. If μ(wn) → 0 with qn → −∞ and {pn} is bounded, then

wnμ(wn)
3 = pn︸︷︷︸

bounded

e−3pn+3qn
√
2

︸ ︷︷ ︸
→0

+ qn
√
2e3qn

√
2

︸ ︷︷ ︸
→0

e−3pn
︸ ︷︷ ︸
bounded

→ 0.
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Then condition (F) doesn’t hold. Therefore ΛKul(Γ ) = {e1} ∪ ←−→e2, e3.

4.2 Case 2

In this section, we study the case of discrete subgroups ofU+ conjugate to a diagonal
group. We start by describing the form of these groups.

Proposition 24 Let Γ ⊂ U+ be a commutative subgroup such that each element of
Γ has the form Diag(α, β, α−1β−1). Then there exist two multiplicative subgroups
W1,W2 ⊂ (C∗, ·) such that

Γ = ΓW1,W2 =
{
Diag(w1, w2, 1)

∣
∣
∣w1 ∈ W1, w2 ∈ W2

}
. (28)

Proof Let Γ ⊂ U+ be a commutative group as in the hypothesis. Let γ =
Diag(α, β, α−1β−1) ∈ Γ , then γ = Diag(α2β, αβ2, 1). Let W1,W2 ⊂ C

∗ be the
two multiplicative groups given by W1 = λ13(Γ ) and W2 = λ23(Γ ), then γ =
Diag(w1, w2, 1), where w1 := α2β = λ13(γ ) ∈ W1 and w2 := αβ2 = λ23(γ ) ∈ W2.
Then Γ has the form given by (28). ��
Proposition 25 Let Γ ⊂ U+ be a diagonal discrete group such that every element has
the form γ = Diag(w1, w2, 1). Then rank(Γ ) ≤ 2.

Proof Recall the group morphisms λi j defined in the beginning of Sect. 4. Let μ :
Γ → R

2 given by μ(γ ) = (log |λ13(γ )|, log |λ23(γ )|). Clearly μ is well defined,
and it is a group homomorphism between Γ and the additive subgroup μ(Γ ) ⊂ R

2.
Furthermore Ker(μ) = {id}, and then μ : Γ → μ(Γ ) is a group isomorphism. Since
Γ is discrete, thenμ(Γ ) is discrete and therefore rank (μ(Γ )) ≤ 2, then rank(Γ ) ≤ 2.

��
Proposition 25 implies that rank(W1) + rank(W2) ≤ 2. If rank(W1) = 1,

rank(W2) = 0 or rank(W1) = 0, rank(W2) = 1, then Γ is cyclic, and its Kulka-
rni limit set is described in Section 4.2 of Cano et al. (2013). The cases rank(W1) = 2,
rank(W2) = 0 and rank(W1) = 0, rank(W2) = 2 imply that Γ is not discrete. There-
fore we just have to describe the case:

Γ := Γα,β =
{
Diag

(
αn, βm, 1

) ∣∣
∣ n,m ∈ Z

}
.

for some α, β ∈ C
∗ such that |α| 
= 1 or |β| 
= 1.

Consider a sequenceof distinct elements {γk} ⊂ Γ givenbyγk = Diag(αnk , βmk , 1).
In Table 3 we show all the possible quasi-projective limits of the sequences {γk}.

Lemmas 10 and 11 determine the sets L0 and L1 for groups Γα,β and they will be
used to determine the Kulkarni limit sets in Theorem 10.

Lemma 10 Let Γα,β ⊂ U+ be a discrete group containing loxodromic elements then

L0(Γ ) =
{←−→e1, e2 ∪ {e3}, if αn = βm for some n,m ∈ Z

{e1, e2, e3}, if there are no n,m ∈ Z such that αn = βm .
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Table 3 Quasi-projective limits in the diagonal case

Case τ Conditions Ker(τ ) Im(τ )

(i) Diag(1, 0, 0)
αnk → ∞, βmk → ∞ and αnk β−mk → ∞

αnk → ∞ and βmk → b ∈ C

←−→e2, e3 {e1}

(ii) Diag(0, 1, 0)
αnk → ∞, βmk → ∞ and α−nk βmk → ∞

αnk → 0 and βmk → ∞
←−→e1, e3 {e2}

(iii) Diag(0, 0, 1) αnk → 0 and βmk → 0 ←−→e1, e2 {e3}
(iv) Diag(b, 0, 1) αnk → b ∈ C

∗ and βmk → 0 {e2} ←−→e1, e3

(v) Diag(b, 1, 0) αnk → ∞, βmk → ∞ and αnk β−mk → b ∈ C
∗ {e3} ←−→e1, e2

(vi) Diag(0, b, 1) αnk → 0 and βmk → b ∈ C
∗ {e1} ←−→e2, e3

Proof Let Γ = Γα,β , suppose that αn = βm for some n,m ∈ Z, and let z =
[z1 : z2 : z3] ∈ L0(Γ ). Then

[
α pz1 : βq z2 : z3

] = [z1 : z2 : z3] for an infinite number
of p, q ∈ Z.

If z3 
= 0, then either α and β are rational rotations or z1 = z2 = 0. If the former
happens, then Γ contains no loxodromic elements, contradicting the hypothesis. If the
latter happens, then z = e3. If z3 = 0, we can assume without loss of generality that
z1 
= 0. If z2 = 0, then z = e2. If z2 
= 0, then α p = βq for an infinite number of
integers p, q, and this implies that α jn = β jm for any j ∈ Z. Then z ∈ ←−→e1, e2.

If there are no n,m ∈ Z such that αn = βm , then no point in←−→e1, e2\{e1, e2} satisfies
that

[
α pz1 : βq z2 : z3

] = [z1 : z2 : z3] for an infinite number of p, q ∈ Z. ��
Lemma 11 Let Γα,β ⊂ U+ be a discrete group containing loxodromic elements, then

L1(Γ ) =

⎧
⎪⎨

⎪⎩

{e1, e2}, if |α| > 1 > |β| or |α| < 1 < |β|
{e1, e3}, if |α| > |β| > 1 or |α| < |β| < 1

{e1} ∪ ←−→e2, e3, if β is an irrational rotation.

Proof Let α, β ∈ C
∗, since Γ = Γα,β contains loxodromic elements, we can assume

without loss of generality that |α| 
= 1. Let {γk} ⊂ Γ be a sequence of distinct
elements given by γk = Diag(αk, βk, 1). Let z = [z1 : z2 : z3] ∈ CP

2\L0(Γ ), then
γk z = [

αk z1 : βk z2 : z3
]
. We have two essentially different sequences in Γ , {γ k} and

{γ −k}. Since |α| 
= 1, we can assume, without loss of generality that |α| > 1, then
αk → ∞ as k → ∞. We have three cases:

(i) |β| < 1, then βk → 0 as k → ∞, and γk z → e1 as k → ∞. Analogously,
γk z → e2 as k → −∞.

(ii) |β| = 1, β cannot be a rational rotation because Γ is torsion-free, then β is an
irrational rotation. Then there are subsequences (still denoted by {γk}) converging
to any b ∈ C, |b| = 1. Then γk z → e1 as k → ∞ and γk z → [

0 : b−1z2 : z3
]
as

k → −∞.
(iii) |β| > 1, then βk → ∞ as k → ∞. There are two possibilities:

– αkβ−k → ∞ as k → ∞, then γk z → e1 as k → ∞. Also, γk z → e3 as
k → −∞.
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– αkβ−k → 0 as k → ∞, γk z → e2 as k → ∞ and γk z → e2 as k → ∞, and
γk z → e3 as k → −∞.

��
IfΓ = Γα,β ⊂ U+ is a discrete group containing loxodromic elements, then putting

together Lemmas 10 and 11 we have the following cases:
If αn = βm for some n,m ∈ Z:

[D1] L0(Γ ) ∪ L1(Γ ) = ←−→e1, e2 ∪ {e3}, if |α| > 1 > |β| or |α| < 1 < |β|.
[D2] L0(Γ ) ∪ L1(Γ ) = ←−→e1, e2 ∪ {e3}, if |α| > |β| > 1 or |α| < |β| < 1.

If there are no integers n,m such that αn = βm :

– [D3] L0(Γ ) ∪ L1(Γ ) = {e1, e2, e3}, if |α| > 1 > |β| or |α| < 1 < |β|.
– [D4] L0(Γ ) ∪ L1(Γ ) = {e1, e2, e3}, if |α| > |β| > 1 or |α| < |β| < 1.
– [D5] L0(Γ ) ∪ L1(Γ ) = ←−→e1, e2 ∪ ←−→e2, e3, if β is an irrational rotation.

The following theorem gives the full description of the Kulkarni limit set for groups
in this case, we will use the notation described in the previous paragraph.

Theorem 10 LetΓα,β ⊂ U+ be a discrete group containing loxodromic elements, then

(i) ΛKul(Γ ) = ←−→e1, e2 ∪ {e3} in Cases [D1] and [D2].
(ii) ΛKul(Γ ) = {e1, e2, e3} in Cases [D3] and [D4].
(iii) ΛKul(Γ ) = ←−→e1, e2 ∪ ←−→e2, e3 in Case [D5].

Proof We consider a sequence {γ k} ⊂ Γ . We will determine the quasi-projective
limits of this sequence using Table 3, and then using Proposition 2, we determine the
set L2(Γ ), and therefore ΛKul(Γ ).

– In Case [D1], αk → ∞, βk → 0, and the quasi-projective limit is given by
(i) of Table 3. Therefore the orbits of compact subsets of CP\L0(Γ ) ∪ L1(Γ )

accumulate on {e1} and {e2} under the sequences {γ k} and {γ −k} respectively.
Then ΛKul(Γ ) = ←−→e1, e2 ∪ {e3}.

– In Case [D2], αk → ∞, βk → ∞ and αkβ−k → ∞, then the quasi-projective
limit is also given by (i) of Table 3. We have again, ΛKul(Γ ) = ←−→e1, e2 ∪ {e3}.

– In Cases [D3] and [D4], the orbits of compact subsets of CP\L0(Γ ) ∪ L1(Γ )

accumulate on {e1} (and accumulate on {e1} under the sequence of {γ −k}). Then
ΛKul(Γ ) = {e1, e2, e3}.

– In Case [D5], we have |β| = 1, and we can assume without loss of generality that
|α| > 1. Then the quasi-projective limit of the sequence {γk} is τ = Diag(1, 0, 0)
and therefore the orbits of compact subsets of CP

2\Ker(τ ) = CP
2\←−→e2, e3 accu-

mulate on Im(τ ) = {e1}. If K ⊂ CP
2\ (←−→e1, e2 ∪ ←−→e2, e3

)
, then K ⊂ CP

2\←−→e2, e3.
Therefore L2(Γ ) = {e1}, we finally conclude that

ΛKul(Γ ) = ←−→e1, e2 ∪ ←−→e2, e3.

��
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5 Proof of theMain Theorems

In this section we prove Theorem 1 for discrete subgroups of U+ and Theorem 2.

Proof of Theorem 1 Let Γ ⊂ U+ be a complex Kleinian group such that its Kulkarni
limit set does not consist of exactly four lines in general position. We can assume that
Γ contains loxodromic elements, otherwise it is described in detail in Barrera et al.
(2018a).

If Γ is non-commutative, then in each sub-case of the proof of Theorem 8 we
have constructed an open subset ΩΓ ⊂ CP

2 such that the orbits of every compact set
K ⊂ ΩΓ accumulate on CP

2\ΩΓ . Thus we can define a limit set for the action of Γ

by ΛΓ := CP
2 \ΩΓ . This limit set describes the dynamics of Γ , and the open region

ΩΓ satisfies (i) and (ii) by construction. Γ is finitely generated (see Auslander 1960)
and we have proven in Theorem 8 that rank(Γ ) ≤ 4. This verifies (iii). Conclusion
(iv) follows immediately from Theorem 5 and Corollary 7.

If Γ is commutative, it is conjugate to a sugroup of the Lie groups C1 or C2 (see
Lemma 4 and the subsequent arguments). In this setting, the region ΩKul(Γ ) satisfies
conclusions (i) and (ii) as a consequence of Theorems 9, and 10. Again, Γ is finitely
generated Auslander (1960) and rank(Γ ) ≤ 4 (Propositions 23 and 25). This proves
conclusion (iii). On the other hand, Γ ∼= Z

r with r = rank(Γ ), and then we can write
Γ as a trivial semidirect product of copies of Z, thus verifying conclusion (iv).

In both cases, conclusion (v) follows from Theorem 4. ��
As it was stated in the introduction, our ultimate goal is to prove Theorem 1 for solv-

able discrete subgroups of PSL (3, C) satisfying the hypothesis of the theorem. Using
the ideas we have developed in this paper, we are able to prove a first generalization
of Theorem 1, stated in Theorem 2.

Proof of Theorem 2 Let Γ be a solvable subgroup of PSL (3, C) as in the hypothesis
of Theorem 2. Theorem 4 guaranties the existence of a virtually triangularizable finite
index subgroup Γ0 ⊂ Γ . According to the hypothesis, Γ0 is commutative and there-
fore, the non-empty region ΩKul(Γ0) satisfies conclusions (i) and (ii) (Theorem 1).
Proposition 3.6 of Barrera et al. (2016) states that ΩKul(Γ ) = ΩKul(Γ0), thus proving
conclusions (i) and (ii). Finally, conclusion (iii) follows from Theorem 4. ��

In order to prove the remaining conclusions for solvable subgroups of PSL (3, C)

we need to study the extensions of upper triangular discrete groups of U+. This will
be done in subsequent works.
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